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Coding of position by simultaneously recorded sensory
neurones in the cat dorsal root ganglion
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Muscle, cutaneous and joint afferents continuously signal information about the position
and movement of individual joints. How does the nervous system extract more global
information, for example about the position of the foot in space? To study this question we
used microelectrode arrays to record impulses simultaneously from up to 100 discriminable
nerve cells in the L6 and L7 dorsal root ganglia (DRG) of the anaesthetized cat. When the
hindlimb was displaced passively with a random trajectory, the firing rate of the neurones
could be predicted from a linear sum of positions and velocities in Cartesian (x, y), polar or
joint angular coordinates. The process could also be reversed to predict the kinematics of the
limb from the firing rates of the neurones with an accuracy of 1–2 cm. Predictions of position
and velocity could be combined to give an improved fit to limb position. Decoders trained using
random movements successfully predicted cyclic movements and movements in which the limb
was displaced from a central point to various positions in the periphery. A small number of
highly informative neurones (6–8) could account for over 80% of the variance in position and
a similar result was obtained in a realistic limb model. In conclusion, this work illustrates
how populations of sensory receptors may encode a sense of limb position and how the
firing of even a small number of neurones can be used to decode the position of the limb
in space.
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Since Sherrington first described proprioception,
investigators have tried to understand how a distributed
population of sensory neurones throughout the body
encodes posture and movement (Sherrington, 1906;
Mountcastle, 1980; Bosco & Poppele, 2001; Gandevia
et al. 2002). The proprioceptive sense of the angle
of individual joints is derived from a multisensory
integration of inputs from many receptors of differing
types. Pulling on an isolated and externalized human
tendon gives a sense of movement, implying that muscle
receptors are involved in determining the angle of the
joints that their muscles span (McCloskey et al. 1983).
Anaesthetizing the skin and joints in humans reduces the
accuracy of judgements about joint position, suggesting
that these receptors are also involved in determining
the position of individual joints (Gandevia et al. 1983;
Collins et al. 2000; Gandevia et al. 2002). Finally,
microstimulation of joint afferents and some cutaneous
receptors evokes sensations of movement in human
subjects (Macefield et al. 1990).

Most studies on the role of afferents in proprioception
have examined the encoding properties of single receptors

in isolation. In some studies, ensembles have been
compiled from separate recordings, allowing correlations
between firing rate and variables such as joint position
and velocity or a muscle’s length and force (Loeb
et al. 1985; Prochazka & Gorassini, 1998b; Jones et al.
2001; Cordo et al. 2002; Ribot-Ciscar et al. 2003). The
implicit assumption is that the central nervous system
assembles the sensory activity into a useful representation
of variables, such as joint angle, and the representation
of each joint is eventually combined to give a sense of
the position of our limbs with respect to the body. Since
this representation may require a combination of many
neurones, single-unit recording techniques are not
adequate to study proprioception directly.

In this study we recorded simultaneously from
populations of neurones in the L6 and L7 dorsal root
ganglia (DRG) of anaesthetized cats. This enabled us
to study directly how sensory information is encoded
into the firing rates of a population of neurones and
how these firing rates may be decoded to predict the
position of the limb in space. Neural recordings were
made while the hindlimb was passively moved through
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a variety of trajectories, including random, cyclical and
centre-out paths. We used multivariate, linear regressions
to model the relationship between hindlimb kinematics
and sensory activity. The results demonstrate that limb
trajectories can be accurately reconstructed from less
than 10 selected neurones. The Appendix presents a
model that demonstrates how even a few muscle receptors
can provide accurate information about the end-point
of a limb in a physiologically plausible way, without
the need for complex trigonometric calculations from
individual joint angles. The Discussion considers some
methodological limitations, as well as the functional
implications of our results for the normal sense of
position.

Methods

The Animal Policy and Welfare Committee of the
University of Alberta approved all procedures under the
guidelines of the Canadian Council of Animal Care.
Seven adult cats were anaesthetized with sodium pento-
barbitone (40 mg kg−1 i.p.). A tracheal cannula was
inserted to maintain respiration and a jugular catheter
was used to administer fluids and the same anaesthetic,
as required to maintain a surgical level of anaesthesia.
The back was shaved and a skin incision was made along
the mid-line of the back. Paraspinal muscles overlying
the transverse processes of L5–S1 were removed and a
laminectomy was performed to expose the spinal cord
and dorsal roots. Two 5 × 10 arrays of penetrating micro-
electrodes (Cyberkinetics Inc., Foxborough, MA, USA)
were implanted through the dura into the L6 and L7 dorsal
root ganglia (DRGs) on one side with a high-velocity
inserter (Rousche & Normann, 1992). Reference wires
were placed in the fluid surrounding the DRGs and the skin
flap was closed over the back. After surgery the animals
were suspended in a spinal frame and radiant heat was
used to maintain the body temperature near 37◦C. At
the end of the experiment the animal was killed using an
overdose of the anaesthesia and the cessation of cardiac
activity was monitored for several minutes.

Multichannel neural recording technique

The electrodes used in these experiments were arranged in
a rectangular configuration with 5 rows of 10 electrodes,
1.5 mm in length and spaced 400 µm apart. In addition
to providing many sites for recording action potentials,
this dense arrangement of electrodes serves to anchor
the implanted array among the densely packed cell
bodies within the ganglion. The electrode arrays were
connected to a 100- channel amplifier. The gain of
the amplifiers was 5000 (bandwidth 250–7500 Hz) and
signals from each electrode were sampled at 30 kHz.

A Pentium class computer recorded and saved the
signals in conjunction with a Neural Signal Acquisition
System (NSAS; Cyberkinetics Inc.). This system required
thresholds to be set on each channel and only saved brief
(1 ms) segments of the signal around the time that the
threshold was crossed (Guillory & Normann, 1999).

Single units were discriminated offline from the
set of recorded waveforms on each electrode using
a Matlab-based algorithm (Shoham et al. 2003). The
waveforms were first projected onto their principle
components (PC), and an expectation-maximization
clustering algorithm then identified the number of clusters
and their parameters (see Fig. 1).

Following the cluster estimation procedure, additional
automated procedures for ‘spike train editing’ were
applied (Stein & Weber, 2004). For example, an algorithm
applied statistical tests to eliminate spikes that produced
instantaneous firing rates more than double the smoothed
firing rate and added spikes to long intervals that produced
an instantaneous rate about half of the smoothed firing
rate. These deviations occurred when an erroneous wave-
form was accepted or a correct waveform was missed;
see Stein & Weber (2004) for a detailed justification.
The spike-editing techniques facilitated analysis of units
for which the threshold was not set ideally or the
signal-to-noise ratio was marginal. For control purposes,
we repeated the analysis using traditional analysis
techniques. The results were virtually identical, but the
variability was slightly greater with the unedited spike
trains, as expected.

Sensory afferents were activated by palpation and
manipulation of the hindlimb. The response properties
were used to categorize each unit (Aoyagi et al. 2003).
Briefly, the hip, knee, ankle and toes were moved manually
to identify muscle and joint receptors. A hand-held
vibrator (∼140 Hz) was generally applied over the tendon
or muscle belly to identify primary spindle afferents. Golgi
tendon organs may have been missed, because the animals
were deeply anaesthetized and the muscles were completely
flaccid. Cutaneous receptors were identified by palpation
(touch, pressure, pinch and vibration). Gentle blowing or
focal touch was used to identify hair receptors. During each
manipulation, 10 s recordings were made to document the
waveform and response for each unit.

After the units on each electrode were categorized,
various movements were applied to the foot manually or
with a robotic manipulator. The manipulator had two DC
servomotors (BE233DJ; Parker Hannifin, Rohnert Park,
CA, USA) and was programmed to deliver repeatable
movements. For example, to generate random movements,
the manipulator moved through a series of positions
selected at random from a rectangular grid of points in
the sagittal plane and the velocity of each movement
was also chosen at random over a range of speeds. The
movements continued until all points in the grid had
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Figure 1. Methods for analyzing waveforms on a single electrode
Various waveforms recorded on one electrode were sorted (A) into three distinct units (red, blue and green) and
unclassified waveforms (black) using cluster analysis in a space (B) representing the first two principal components
(PC1, PC2) of the waveforms. The ellipses were computed using an automatic spike classifier (Shoham et al. 2003).
The pattern of activity and joint angles are shown below (C).

been reached so there was a uniform coverage of the
workspace. In several experiments, the identification and
application of movements were repeated several hours
later. For example, in one experiment in which 60 units
were initially recorded 22 of them were still present in a
second series of movements applied more than 4 h later.
Thus, over a third of the units could be recorded for at
least 4 h.

Figure 2. Methods for applying and recording movements
Position sensors (ϒ ) were attached at the hip, near the knee and the ankle and on the paw near the
metatarsophalangeal joint. From the positions of the sensors a stick figure of the cat’s hindlimb in the sagittal
plane was calculated. A, pseudorandom movement of the paw manually over its passive range of motion is shown
as a dotted line. The position of the paw can be represented in terms of the forward (x) and vertical (y) position
with respect to the hip (Cartesian coordinates). It can also be represented in polar coordinates as the distance (r)
and the orientation angle (φ) of the paw with respect to the hip or in terms of the joint angles. Note that the
orientation and hip (h) angles are measured with respect to the horizontal and increase as the hip and leg are
extended. The knee and ankle angles (not shown) are defined according to the usual convention and increase with
extension of the joint. B, random movements over a more restricted range (approximately 20 × 15 cm) using a
robotic manipulator (see details in Methods).

Kinematic recording technique

Walking-like, centre-out movements (from a central point
to eight points in the periphery) and random movements
were studied, all of which were largely confined to the
sagittal plane. For example, the random movements
(Fig. 2) covered most of the physiological range of the
cat’s hindlimb in the anterior–posterior plane (30 cm) and
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in the vertical direction (20 cm), but only 1–2 cm in the
medio-lateral plane. A U- shaped holder made of dental
acrylic was fitted around the cat’s paw, proximal to the
metatarsophalangeal (MTP) joint. The top of the U was
tied so that the paw was held securely. Any pressure on
the skin was distributed widely and direct contact with
the skin by the experimenters or the manipulator was
minimized.

During manual movements of the limb, electro-
magnetic, motion-tracking sensors (6D- Research, Skill
Technologies Inc., Phoenix, AZ, USA) measured the limb
kinematics. Four magnetic sensors were placed on: (1) the
skin near the hip joint; (2) the lateral epicondyle of the
femur near the knee; (3) the lateral malleolus of the tibia
near the ankle; and (4) the lateral surface of the foot
holder near the metatarsophalangeal joint. For simplicity
we will refer to this as the ‘toe sensor’ and use it as a
measure of the toe position in space. To avoid skin slippage
or displacement during movement, magnetic sensors (2)
and (3) were rigidly fixed to the femur and tibia by
surgical sutures through holes drilled in the respective
bones. The distance of each sensor from its neighbouring
joints was measured to allow calculation of the position
of the joint centre. Intersegmental (joint) angles were
calculated, together with the position of the toe sensor in
rectangular and polar coordinates, using the hip sensor as
the origin. The medio-lateral movements of the limb were
also recorded, but were small (<2 cm) and are not shown.
Results computed from the 3D angles, obtained with the
electromagnetic motion-tracking system, were compared
with those computed from 2D projections onto the
sagittal plane and no significant differences in the fits were
found. Therefore, 2D angles are analysed here.

The sampling rate of the 6D- Research system was 30 Hz
and was well above the highest frequency components
applied to the cat’s paw (5–10 Hz). For the magnetic
recordings we ensured that all instruments near the
sensors, including sections of the spinal frame, contained
no metal to avoid distorting the signals from the
electromagnetic sensors. A synchronization pulse was used
to align the neural and motion data offline.

A high-speed digital video camera (120 fields s−1,
GRDV9800R, JVC Corp.) recorded the limb movements
produced by the robotic manipulator. A light-emitting
diode (LED) was used to synchronize the video with the
neural data. White markers were glued to the skin over
the iliac crest, and the joint centres of the hip, knee,
ankle and MTP joints. The centroid of the marker was
automatically located in each image of the video using
custom Matlab (Mathworks, Inc.) software. The camera
plane was parallel to the sagittal plane of the leg.
Calibration markers were spaced 10 cm apart in the
horizontal and vertical planes and used to calibrate the
camera view. Parallax errors were compensated by scaling
the segment vectors by the measured separation distance

between the ankle and MTP markers (i.e. foot length,
which is constant).

Hip, knee and ankle joint angles were computed from
the digitized marker positions, extension corresponding
to a positive angular displacement. The knee marker was
not used, because the skin overlying the knee tends to slide
over the joint. Instead, the knee-joint angle was calculated
using eqn (1), which follows from the law of cosines.

θknee = cos−1

(
L2

femur + L2
shank − d2

2L femur L shank

)
, (1)

The three distances used in this calculation are: (1) Lfemur,
femur length; (2) Lshank, shank length; and (3) d, distance
between the hip and ankle markers. The MTP was regarded
as the end-point (toe position) for the limb measured in
a polar coordinate system relative to the hip (r, radial
distance; φ, orientation).

Neural encoding

A multivariate linear regression was used to model the
firing rate of each neurone as a function of kinematic
variables of the hindlimb (neural encoding). The full
procedure included three processing steps.

(1) The neural and kinematic data were aligned at the
LED onset time. Neural firing rates were calculated using
the filter in eqn (2).

fi = 1

�t

∑
j

(
1 −

∣∣ti − t j

∣∣
�t2

)
. (2)

The firing rate (f i) is computed at each time index i, t i is the
current time, t j is the time of spike j in the interval [t i − �t ,
t i + �t], and �t is the sampling interval. Essentially, a
contribution to the rate is added for the two nearest sample
times for the kinematic variables in a way that all spikes
are equally weighted and the mean time of the weights
is the actual time of the spike. This method is similar
to the partial binning methods previously described
(Richmond et al. 1987; Schwartz, 1992; Stein et al.
2004).

(2) The rate function was filtered with a critically
damped, second-order, low-pass filter (Stein et al. 2004).
The impulse response of this filter is an EPSP-like
waveform (Jack et al. 1975). Rate constants between 15
and 30 rad s−1 were used, corresponding to time constants
of 67–33 ms. Different filters and other time constants for
the EPSP-like filter were also applied using the Matlab
function ‘filt’. In general, longer time constants (more
filtering) gave better fits, as expected. However, if the time
constant was extended beyond the values cited, very little
improvement was seen. The same filtering was also applied
to the kinematic variables to avoid introducing relative
time delays. Filtering was done after step (1) above to
ensure that all spikes were given equal weight.
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(3) The filtered firing rates were fitted to a weighted
sum of position and velocity variables in each of three
coordinate systems: Cartesian (x, y) and polar (r, φ)
coordinates for the toe sensor, and joint angles (hip,
knee and ankle) for the limb. This allowed a comparison
of the predictions in Cartesian, polar and joint angular
coordinates. For example, the predicted firing rate (g i) for
the ith neurone can be written in Cartesian coordinates:

gi = ai0 + ai1x + ai2 y + ai3dx/dt + ai4dy/dt. (3)

The five coefficients were chosen so as to minimize
the difference between the predicted firing rates and
the filtered firing rates for that neurone. If there are
n neurones, the process was repeated for each neurone
(1 ≤ i ≤ n). Corresponding forms of eqn (3) were used
to accommodate kinematics expressed in polar and joint
angular coordinates. In joint coordinates, intersegmental
angles (extension was taken as positive) were used to
describe the limb position in the sagittal plane. In polar
coordinates, the toe position and velocity were also
expressed with respect to an origin at the hip, which was
fixed in space. The variance accounted for (VAF) expressed
as a percentage was used to evaluate the goodness of fit
for each coordinate. Prediction of position in the sagittal
plane requires combining coordinates and the root mean
square (r.m.s.) error for the predictions was calculated.
The coefficients of the linear encoding model (eqn (3))
describe the sensitivity of the neural response to each
kinematic variable and linear correlation coefficients were
also calculated for the relation between each kinematic
variable and the firing rates.

Neural decoding

A linear filter model was used to reconstruct the
hindlimb trajectories from the ensemble of neural firing
rates f . Equation (4) shows the form of the model for
decoding the horizontal (x) position of the toe in Cartesian
coordinates:

x̂ j = b0 + b1 f2, j + . . . + nn fn, j + bn + 1 f1, j−1

+bn+2 f2, j−1 + . . . + b2n fn, j−1, (4)

where x̂ j is the predicted value of x at the time point j.
This is the prediction from the filtered firing rates of n
neurones, based on the present (j) and one previous (j–1)
time point. In general, for L previous time points and n
neurones, the decoding model takes the form:

x̂ j = b0 +
n∑

i=1

L∑
k=0

bkn+i fi, j−k . (5)

Similar, independent predictions were made for other
variables, such as y, dx/dt and dy/dt in Cartesian
coordinates and for variables in polar and joint angular
coordinates. Values of L between 1 and 3 were used in the

figures shown here. The b coefficients were chosen so as
to minimize the mean square error between the predicted
and measured values for each variable.

Equation (5) gives estimates of variables such as the x
position and the velocity dx/dt . Integrating the velocity
gives an independent estimate of the position. Using
a weighted average of these two variables (eqn (6))
substantially improved the fit:

x̃ j = w(x̃ j−1 + dx̂ j

/
dt�t) + (1 − w)x̂ j , (6)

where x̃ j is the new estimate using a weight of w. To start the
process, x̃0 = x0. The weight w was varied between 0 and
1 to find the best estimate of x̃ . Note that for w = 0, only
position information is used and for w = 1, only velocity
information is used, except for the initial condition.
Predictions were made for the other variables in each of
the coordinate systems. Although eqn (6) is somewhat ad
hoc, eqn (7) and the Appendix describe a related method
for combining velocity and position information, based
on the properties of muscle spindles, which respond to
both length and velocity. Decoding with a leaky integrator
(eqn (8)) having properties close to those found for muscle
spindles gave equally good fits.

Results

Seven animals were studied, in which arrays of
50 electrodes each were implanted in the L6 and L7 DRGs.
Four hundred and nineteen units were identified in terms
of their receptive fields. The total numbers identified
in each experiment were: 73, 24, 48, 90, 61, 81 and
42. Of the total, 53% were muscle receptors and 47%
were from other sources (skin, hair, joints, etc.; see also
Aoyagi et al. 2003). Forty-nine per cent were recorded
from the L6 dorsal root and 51% from the L7 root.
Additional units were discriminated (see Methods), but
were not individually identified as to their receptive field
or type. For example, in the fourth animal a total of
140 units were discriminated from 59 channels and in
the fifth 87 units from 37 channels. Thus, nearly half the
electrodes in these experiments recorded single units and
each recorded 2.4 units on average.

Figure 2A shows the path of the paw as it was moved
pseudorandomly (dotted line). The movements were
applied manually and covered most of the passive range of
motion (about 15 cm forward, backward and upward).
In Fig. 2B a robot applied movements as a series of
point-to-point movements over a more restricted grid of
points in the sagittal plane; see Methods and Stein et al.
(2004). Firing rates were computed at the sampling times
for the kinematics (see Methods). The response surface
maps in Fig. 3 illustrate firing rates as a function of limb
position (x, y) for the movements of Fig. 2A. Figure 3A
shows the firing rate of a slowly adapting cutaneous
afferent with a receptive field on the front of the knee
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Figure 3. Surface plots for cutaneous (A) and muscle
afferents (B) showing the variation in firing rate (vertical
axis) as the toe is moved throughout the sagittal plane (x
and y positions in cm)
The bin width was 0.5 cm and a 2D moving average filter with
5 bins was used to smooth the data. Note that the perspectives
are different in the two parts of the figure, so that the peak
firing rates are at the back and do not obscure other data.

(trends are highlighted by colour-coding). When the toe
was raised, for example from 20 to 15 cm below the hip, its
firing rate increased because the skin around the knee was
stretched. Similarly, it fired faster when the toe was moved
forward. Figure 3B shows the firing rate of a hamstring
muscle spindle afferent that responded to knee extension
and hip flexion. These movements were correlated with
downward and forward movements of the toe. Thus, the
firing rate of single sensory neurones can be correlated
with movement of the toe with respect to the hip.

The first question pursued in these experiments was
to what extent is the firing rate correlated with various
kinematic variables? We addressed this question by testing
the predictive power of the encoding model (using the
50 cells that showed the best correlations in a given trial).
As shown in Fig. 4, about 30% of the variance in firing
rate was related to the x and y position of the limb as
defined in Fig. 2. Velocity accounted for about 20% of
the variance, but acceleration accounted for less than
5%. Furthermore, combining position and velocity (the
4th set of bars in Fig. 4) accounted for a percentage of
variance that approached the sum of the values for each
variable alone (the 1st and 2nd set of bars). Since the firing
can be described in terms of positions and velocities, the
amplitudes and preferred directions can be calculated from
the coefficients in the encoding models for both position
and velocity. For example, from eqn (1) the amplitude A

in position space for the ith neurone is A = √
(a2

i1 + a2
i2)

and the direction is α = tan−1(ai2/ai1). Figure 5 shows the
distributions in one data set of all cells for which the VAF
was more than 40%. There are a wide range of amplitudes
and preferred directions.

These kinematic variables accounted for nearly half
the variance in Cartesian (x, y) coordinates (Fig. 4). The
fit was somewhat better in polar coordinates and joint

Figure 4. The average VAF (%) in the firing rate of the 50 cells
most closely correlated with the kinematic variables
Three different random data sets are shown from three experiments.
The largest contributions are from position and velocity and their
contributions approximately sum.
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Figure 5. Preferred directions in position and velocity space are
given by the coefficients from the encoding model using
coefficients in Cartesian coordinates from a random data set
All illustrated units had a VAF > 40%. Note the wide range of
preferred directions for both the position (left panel) and the velocity
(right panel) coefficients.

angular coordinates (Aoyagi et al. 2003; Stein et al. 2004).
Figure 6 shows the firing rates of 4 neurones fitted to the
kinematics in joint angular coordinates. The units were: the
best fitting neurone (Fig. 4A); the 3rd best (Fig. 4B); the
10th best (Fig. 4C); and the 30th best (Fig. 4D). Clearly,
the major features that generate firing in these sensory
cells are captured, although the details are progressively
less accurate as VAF declines from Fig. 6A to D.

Sensory decoding

In contrast to the encoding of kinematic information in the
firing rates of neurones, decoding involves the prediction

Figure 6. Comparison of the actual (line)
and predicted firing rates (dots) for the
best fitting (A) the 3rd best (B), the 10th
best (C) and the 30th best fitting neurone
(D)
The VAF (%) is shown for each unit.

of limb position from the firing patterns of a population of
neurones. Various decoding methods have been proposed
(Bialek et al. 1991; Salinas & Abbott, 1994; Schwartz, 1994;
Wessberg et al. 2000; Scott et al. 2001; Serruya et al. 2002;
Taylor et al. 2002), and we have chosen a linear filter
similar to Wessberg et al. (2000) and Serruya et al. (2002).
Figure 7 illustrates the results of decoding toe position in
polar coordinates from the firing rates of 30 neurones.
Polar coordinates were used since they gave rather better
predictions than Cartesian coordinates. Firing rates and
kinematic data (positions and velocities) from the first
half of a trial were used to identify the coefficients of the
model (training set). Data from the second half of the
trial were used to test the model’s ability to predict toe
position (test set). Figure 7A illustrates the fit of the model
to the training set. The VAF (training) was 99 and 98%
for the distance and orientation variables, respectively, in
polar coordinates using 30 units in the calculation. The
root mean square (r.m.s.) errors were a few millimetres
and <0.1 rad, respectively, so the actual (continuous
lines) and predicted (dots) positions superimpose for
the most part. From these values the x and y position
of the paw could be calculated to an accuracy of about
1 cm. Figure 7B demonstrates the ability of the model to
predict movements for the second half of the data (test
set). The VAF was reduced (82 and 93%, respectively) and
the accuracy in prediction was correspondingly poorer.
The test predictions used the 5 neurones with the best
correlation to the kinematic variables.

Figure 8 illustrates the effect of the number of neurones
on the training and test performance. For this analysis the
neurones were rank-ordered by their encoding correlation
coefficients in the training set. One to fifteen neurones
were selected according to their rank (highest first).
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These same neurones were then used to predict the
movement in both the training and the test sets. As the
number of neurones in the training set increased, the
predictions became monotonically better. The VAF with
50 neurones was nearly 100% and the r.m.s. error was
∼1 cm. Predictions using only the one neurone, whose
firing was best correlated to each kinematic variable,
accounted for about 70% of the variance in position in
both the training and the test sets in the two experiments
shown. Interestingly, the best neurones for both r and
φ in the two experiments were muscle receptors from
the hip and knee (see Table 1). In the test set, as more
neurones were added, the VAF increased and reached a

Figure 7. Predicting position in training (A) and test (B) sets
A, decoding position using 30 neurones (training) in polar coordinates
(distance r and orientation φ) for the first half of a data set. From the
polar coordinates the x and y coordinates were calculated. The VAF
(%) and r.m.s. error are shown for each variable. B, decoding results
for the second half of the data set (test) using the 5 best neurones
identified in the training set. Actual (continuous lines) and predicted
positions (dots) are shown in each part.

plateau between 80 and 90% with 6–8 neurones. The VAF
actually began to decline when more poorly correlated
neurones were added. Similarly, the r.m.s. error decreased
up to a point and then began to increase as more neurones
were added. The r.m.s. error provides information related
to, but not identical to the VAF. For example, if the
predicted data were offset from the actual positions by
1 cm, but followed the variations in limb position perfectly,
the VAF would be 100%, but the r.m.s. error would
be 1 cm.

Table 1 gives the identified neurones with the best
correlation to each kinematic variable for data sets
in two experiments. These units were predominantly
muscle receptors (30/40; 75%) from the L6 ganglion
(27/40; 68%), often from bi-articular muscles (12/30;
40%). The values are higher than the overall percentages
given at the beginning of the Results (53% muscle and
49% L6) and in our recent publication; 30% biarticular
muscles (Aoyagi et al. 2003). This suggests that muscle
receptors, particularly from proximal bi-articular muscles
are particularly useful in predicting overall limb position.
For example, the posterior portion of biceps femoris
stretches from near the hip to near the ankle in the cat. The
firing of a muscle receptor in this muscle should therefore
be well correlated with the distance from the hip to the
end-point. In contrast, a receptor in gastrocnemius will
mainly signal ankle and to a lesser extent knee position,
but will not be so correlated to a global variable. However,
even receptors in the toes can give information about limb

Figure 8. Increasing the number of units used to fit the first half
of a data set (training) increases the VAF and decreases the
r.m.s. error
When applying the parameters from the training set to the second half
of the data set (test), the VAF generally reaches a peak and the r.m.s.
error a minimum with 5–10 neurones. Data are shown from two
different experiments. The values for 50 neurones are shown at the far
right of the graphs (x, o).

C© The Physiological Society 2004



J Physiol 560.3 Coding of dorsal root ganglion neurones 891

Table 1. Receptive fields of the 5 units that showed the best absolute correlations to each of the kinematic variables studied
in polar coordinates (r, φ, dr and dφ)

Exp. 1 Exp. 2

Corr. coef. Unit Root Type Loc./resp. Corr. coef. Unit Root Type Loc./resp.

r 0.6532 56.2 L6 mus. hf 0.7499 70.3 L6 mus. he/kf
0.6432 74.2 L6 mus. ke 0.6311 55.1 L6 mus. kf
0.6205 87.3 L6 mus. kf/he 0.6168 13.1 L7 mus. ae
0.6085 56.3 L6 cut. med. leg 0.4296 68.1 L6 cut. toe pad
0.5433 65.1 L6 mus. kf/he 0.3466 33.1 L7 mus. te

φ 0.6222 79.2 L6 mus. kf/he 0.6579 63.1 L6 mus. hf
0.5515 98.1 L6 mus. hf/ke 0.637 14.1 L7 mus. af
0.5511 16.2 L7 mus. ke 0.6321 43.1 L7 cut. ant. leg
0.5439 52.3 L6 mus. hf 0.627 68.1 L6 cut. toe pad
0.5097 89.2 L6 mus. he/kf 0.6074 13.1 L7 mus. AE

dr 0.6305 5.1 L7 mus. ae 0.6937 13.2 L7 mus. af
0.5654 87.3 L6 mus. kf/he 0.6878 32.2 L7 cut. lat. leg
0.5569 66.1 L6 mus. kf/he 0.6708 43.1 L7 cut. ant. leg
0.5318 54.3 L6 mus. ae 0.6692 25.1 L7 joint? toe
0.5288 68.3 L6 cut. med. a 0.6414 86.2 L6 cut. vib. foot

dφ 0.7602 100.1 L6 mus. hf 0.6192 70.3 L6 mus. he/kf
0.6888 83.1 L6 cut. foot 0.4817 13.1 L7 mus. ae
0.6657 52.4 L6 mus. he 0.4123 55.1 L6 mus. kf
0.6494 57.1 L6 mus. hf/ke 0.4099 33.1 L7 mus. te/af
0.6233 89.1 L6 mus. hf/ke 0.3491 60.1 L6 mus. hf

The abbreviations used are: muscle (mus.), cutaneous (cut.), hip (h), knee (k), ankle (a), flexion (f), extension (e), anterior
(ant.), lateral (lat.) and med. (medial).

position because of the biomechanical linkage between
joints (Bosco & Poppele, 2001).

How well does the linear decoder derived from one
type of movement predict movements of a different type?
In other words, is it a general model for a wide range of
movements or only useful for the particular movements
used to derive it? To answer these questions, we used
data from pseudorandom movements as the training
set (40 units, see Fig. 9A) and tested our predictions
on walking-like (Fig. 9B) and centre-out movements
(Fig. 9C). The centre-out task is a commonly used model
in which movements are made from a central point to
a number of positions around the periphery. In each
part of the figure, the predicted distance and orientation
(dots) fitted the actual data well (continuous lines), as
indicated by the VAF and r.m.s. error. From the values in
polar coordinates, the movement in the sagittal plane was
again calculated and the predicted and actual trajectories
are shown. The r.m.s. errors of the predictions from the
actual positions were 1.1 cm (random), 1.7 cm
(walking-like movements) and 2.3 cm (centre-out
movements).

The poorest fit was to the centre-out movements, but
the accuracy of the fit is hard to appreciate visually
in the right-hand panel of Fig. 9C, because centre-out
movements were somewhat irregular when produced

manually. In another experiment a robot produced more
reliable centre-out movements. These are shown in Fig. 10,
together with the fits for a training set and a test set. The
VAF and r.m.s. error were 98% and 0.7 cm, respectively,
for the training set and 91% and 1.6 cm, respectively, for
the test set. These fits were also produced using a slightly
different method that will be described in relation to a
muscle-based model in the Appendix.

Discussion

This study examines the coding of global, whole-limb
information by populations of first-order afferents during
continuous, time-varying movements. The analysis was
done in two stages. First, we used a simple linear regression
to describe how position and velocity information is
encoded by the firing rate of a neurone. Then, the
process was reversed to study how the firing rates of the
neurones could be decoded to predict the position
and velocity of the limb. While previous related work
focused on how a homogeneous population of afferents
encodes specific kinematic inputs and force (Prochazka
& Gorassini, 1998a; Jones et al. 2001; Cordo et al. 2002;
Ribot-Ciscar et al. 2003), we focused both on encoding
in individual neurones and on predicting time-varying
kinematic variables from the firing rates (decoding). This
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Figure 9. Data from a random trial were
used to predict the distance and
orientation of the toe with respect to
the hip in the same trial (A), and in trials
where the limb was moved in a
walking-like pattern (B) or from a central
position to a variety of outer targets (C)
The VAF is shown for each variable as well as
the predicted (dots) and the actual positions
(continuous lines).

approach led to several important insights that were not
obvious from previous studies that recorded serially from
sensory neurones (e.g. see the review by Prochazka, 1996).

First, we found that decoding based on the activity
of a selected subset containing less than 10 cells may
provide an accurate representation of the position of the
limb in the sagittal plane. Second, we have shown that

Figure 10. Predicted position (dots) for centre-out movements
produced by the robotic manipulator (continuous lines)
The first set of movements was used to determine the linear regression
coefficients (training) and these coefficients were used to predict the
second set of movements. The r.m.s. error is given using a joint angle
coordinate system with 50 units and a time constant of 200 ms.

these representations generalize across different kinds
of movements (i.e. from pseudorandom to walking-like
and centre-out movements). Third, our analysis provides
a method of assessing the contribution of different
receptor types to limb position coding. Muscle receptors
contributed most to the determination of the limb
position. Cutaneous afferents, particularly in skin
overlying joints, were also important. Joint afferents may
be involved, but many joint afferents are only active at the
extremes of motion that were not explored fully. Under
the passive, anaesthetized conditions studied, Golgi
tendon organs are relatively difficult to activate and may
be hard to distinguish from joint afferents since the
tendon organs are very insensitive in an anaesthetized
preparation.

Before discussing the nature of the coding process and
its functional implications for the control of movement,
several points should be stated. First, although even a
few neurones can predict limb position accurately, this
does not mean that recordings from only a few cells are
needed or that the nervous system only uses a few cells.
The cells that gave the optimal predictions in the test set
were selected from the recorded neurones that were best
correlated to the kinematics in the training set. Selecting
much larger numbers at random did not give as good a
prediction (our unpublished observations). Without
having access to a substantial population of cells
simultaneously, this result would probably not have
emerged. Numerous previous studies, reviewed by
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Prochazka (1996), have recorded serially from sensory
neurones in the leg, with a wide range of kinematic
profiles (e.g. the locomotor step cycle) without exploring
the possibility of predicting global variables such as the
position of the toes in space. The deterioration of ‘test’
generalization as a result of including all neurones is a
new finding, as well as the resulting suggestion that neural
decoding studies should rely on a small number of selected
neurones. Selecting a limited number of optimal neuro-
nes has not been tried in other systems, such as the
motor cortex. If a similar result emerges, the number of
cortical neurones needed for a reliable multiunit decoder
(Wessberg et al. 2000; Nicolelis, 2003) may have been
greatly over-estimated.

Second, our results do not necessarily imply that
the somatosensory system has great redundancy. Large
numbers of neurones are clearly needed to sense the precise
location of a stimulus applied to a point on the leg or to
discriminate between two closely spaced points. Neurones
involved in these fine discriminations may contribute little
or nothing to the global sense of limb position.

Third, the results may be different during normal
behaviour. Varying fusimotor inputs will influence the
discharge of the muscle spindles (Matthews, 1972;
Prochazka, 1989). Cutaneous receptors, particularly from
the skin of the paw, will fire in response to ground reaction
forces and other forces that are applied to the paw during
normal activities. Golgi tendon organs will be much more

Figure 11. A model containing 6 muscle groups (red lines in A) was used (see Appendix and Discussion)
to test how well muscle receptors could predict toe position
The muscle groups are hip flexors, hip extensors, bi-articular knee flexor/hip extensors, knee extensors, ankle flexors
and ankle extensors. The trajectory produced by the robot in the centre-out task (yellow line) was compared with
the predictions from receptors in 6 muscles (dots) in Cartesian (blue), polar (green) or joint angles (red). A high
VAF (B) and a low r.m.s. error (C) are observed with as few as 4 receptors. The best fit was with joint angles and
the worst fit with Cartesian coordinates.

active during muscle contractions. Nonetheless, similar
methods have been successful in relation to limb position
in decerebrate animals and in animals walking freely
on a treadmill (Weber et al. 2002; Poppele et al. 2003).
Ensemble recordings in animals and recent human work
suggest that muscle spindles basically function as stretch
receptors, even during voluntary movements that include
fusimotor activity (Prochazka & Gorassini, 1998b; Jones
et al. 2001). Thus, these studies under anaesthesia are
a good starting point for understanding coding in the
freely moving animal. Finally, we have used a number of
automated processing steps to extract and edit the spike
trains from up to 100 electrodes. A detailed justification of
the methods has been presented elsewhere (Shoham et al.
2003; Stein & Weber, 2004; Stein et al. 2004) and will not
be discussed further here.

Processing of the data in relation to sensory function

The firing rate of muscle receptors is linearly related
to muscle length and velocity within a limited range
(Terzuolo & Washizu, 1962; Matthews & Stein, 1969).
Some have argued that the relationship to velocity is
better described by a power function with an exponent
less than 1, rather than a linear relationship (Houk et al.
1981; Prochazka & Gorassini, 1998a). However, a linear
relationship is a good first approximation, and including
velocity to a fractional power did not improve the fit
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significantly (our unpublished observations). Inclusion of
acceleration terms did not lead to a statistically significant
improvement in fitting the population of cells studied
(Fig. 4). Cutaneous receptors have usually been studied in
relation to precise stimuli applied to their receptive fields,
rather than movements of a whole limb (Burke et al. 1988;
Johnson, 2001). For consistency, the same processing was
employed here to all units.

In addition, the spike rates were filtered with a
second-order, critically damped, low-pass filter. This
particular filter was chosen because its impulse response is
a waveform that has often been fitted to EPSPs (Jack et al.
1975). The only free parameter is the rate constant that was
optimal in the range of 15–30 rad s−1, which corresponds
to a time constant of 33–67 ms. The appropriate rate
constants for EPSPs in various pathways that receive inputs
from primary sensory neurones are not known. Similar
results were obtained with shorter time constants, but the
VAF was somewhat reduced.

The linear decoding methods gave remarkably good
predictions of the position and velocity of the toe in
space. Such predictions have rarely been attempted because
of the limitations of single-unit recording methods. The
best attempt in the somatosensory system is the work

Figure 12. The effect of the time constant on the r.m.s. error in
the model of Fig. 11 (A) and in the experiment shown in Fig. 10
(B)
The time constant used in the model was 100 ms and this value gave
the best fit, as expected. In the training set of Fig. 10 a longer time
constant produced a better fit to the experimental data. However, in
the test set, there was a clear, best fit with a value near 200 ms.

of Bosco and Poppele (Bosco & Poppele, 2001, 2003;
Poppele et al. 2001). Our study extended this work to a
variety of continuous movements and demonstrated good
predictions using only a few, selected neurones. Though
our results only show that linear algebraic methods
can predict limb kinematics, analogous methods in the
nervous system are quite plausible. The linear weighting
of the synaptic action of different neurones could be
genetically ‘hard-wired’ and/or learnt by trial and error.
In this way the sense of limb position we perceive would
be matched to the knowledge of where our limbs are
in space, derived from other sensory modalities such as
vision.

How can sensory neurones predict global variables
such as toe position?

Positions and velocities were initially predicted
independently, but the two are obviously combined
in the firing rate. If the firing rate, f (t), is a linear sum of
position terms and velocity terms:

f (t) = a + bx(t) + c(dx/dt), (7)

where a is the offset (firing rate in spikes s−1, when x(t) and
dx/dt are 0); and b and c are factors converting from units
of position (m) and velocity (m s−1) to units of firing rate
(spikes s−1). Then, position can be predicted by solving
eqn (7) for x(t). The result is:

x(t) = 1

c

∫ t

0

f (t − τ ) exp(−bτ/c)dτ, (8)

For simplicity the initial conditions have been ignored
in eqn (8). The ratio c/b is a time constant (s) in the
convolution integral of eqn (8) and should not be confused
with the filter time constant mentioned in the Methods.
Also, there are a number of position and velocity variables,
of which x(t) and dx/dt are simply examples in Cartesian
coordinates. Finally, the firing rates of many neuro-
nes contribute to the determination of toe position, so
f (t) will be a weighted sum of the firing rates of each
neurone. Figure 10 was determined using eqn (8) with
50 neurones.

Figure 11 uses a model described in the Appendix,
containing a few muscles with muscle receptors that
obey eqn (7), where x(t) is now the length of the muscle.
This figure also shows that muscle receptors in just a few
muscles can give a good prediction of the position of the toe
in space, using eqn (8). Figure 12 examines the temporal
aspects of the same model. In the model we arbitrarily
used a time constant of 100 ms, and Fig. 12A shows, as
expected, that the least error occurs when a time constant of
100 ms is used in the calculations. In the biological system,
selecting a time constant of 200 ms gave the most accurate
predictions. In other words, to predict toe position
optimally, a ‘leaky integrator’ with a time constant of
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200 ms is required. Further work might test whether spino-
cerebellar cells, for example, provide the optimal time
constant to predict limb position to the cerebellum and
other higher structures.

Overall, the predictions of position had an accuracy
of 1–2 cm (Figs 7, 9 and 10). Recording from more cells
may further improve the predictions, but we are not aware
of any psychophysical data on the absolute accuracy of
limb position sense in the sagittal plane for humans, much
less for cats. What has been measured experimentally is
the amount a joint must be moved at a certain velocity
before a subject can detect it. For example, movements
of the human hip, knee and ankle by about 1 deg can
be detected (Refshauge et al. 1995). If the sensitivity is
the same in the cat and the movements are scaled to
a leg length of about 25 cm, then a 1 deg movement of
the hip would move the toe 0.43 cm. Further studies are
needed to measure the accuracy with which a subject can
specify the position of the toe or hand in space, rather
than detection thresholds when the limb is moved. Work
over the last 20 years has suggested that the motor cortex
plans movements in terms of distances and directions,
essentially a polar coordinate system (Georgopoulos et al.
1982; Schwartz, 1994; Serruya et al. 2002; but see Scott et al.
2001 for a different interpretation). This paper shows how
sensory receptors can provide appropriate information to
guide such movements.

Appendix

Figure 11A shows a simplified model of the muscles of
the hindlimb of the cat, which was used to determine
if a few muscle receptors can predict the position of an
end-point. Six muscles are shown as red lines connecting
different limb segments, based on the model of Yakovenko
et al. (2004), which in turn was derived from Goslow et al.
(1973). The continuous yellow lines give the movements
of the cat’s paw in the centre-out task. The different
coloured dots show the predicted movements from the
responses of simulated muscle receptors. The firing rates
of the simulated receptors were given by a sum of length
and velocity contributions of each muscle, as given by
eqn (8). The lengths and velocities were calculated from
the experimentally measured joint positions and angles.
The predicted end-point was calculated from eqn (8) with
a time constant of 100 ms. Predicted positions deviate
from the actual positions more in Fig. 11A for Cartesian
coordinates than for the polar or joint angular coordinates,
as found experimentally (Stein et al. 2004). Furthermore,
as few as four receptors are needed to produce a high
VAF (Fig. 11B) or a low r.m.s. error (Fig. 11C). The
errors are smaller than found experimentally because no
non-linearities or sources of variability were included in
the model.

Figure 12 gives one final example of interest. In Fig. 12A
the r.m.s. error for the model is shown in the three
coordinate systems as a function of the time constant. The
minimum error occurs for a time constant of 100 ms in all
coordinate systems. This result shows the self-consistency
of the model, since 100 ms was the value used in the
model. Figure 12B shows the same calculation for the
experimental data. There is again a clear minimum, but
experimentally the minimum occurs with a time constant
near 200 ms. The predictions of Fig. 10 used this time
constant.
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