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Superlinear Population Encoding of Dynamic Hand
Trajectory in Primary Motor Cortex
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Neural activity in primary motor cortex (MI) is known to correlate with hand position and velocity. Previous descriptions of this tuning
have (1) been linear in position or velocity, (2) depended only instantaneously on these signals, and/or (3) not incorporated the effects of
interneuronal dependencies on firing rate. We show here that many MI cells encode a superlinear function of the full time-varying hand
trajectory. Approximately 20% of MI cells carry information in the hand trajectory beyond just the position, velocity, and acceleration at
a single time lag. Moreover, approximately one-third of MI cells encode the trajectory in a significantly superlinear manner; as one
consequence, even small position changes can dramatically modulate the gain of the velocity tuning of MI cells, in agreement with recent
psychophysical evidence. We introduce a compact nonlinear “preferred trajectory” model that predicts the complex structure of the
spatiotemporal tuning functions described in previous work. Finally, observing the activity of neighboring cells in the MI network
significantly increases the predictability of the firing rate of a single MI cell; however, we find interneuronal dependencies in MI to be
much more locked to external kinematic parameters than those described recently in the hippocampus. Nevertheless, this neighbor
activity is approximately as informative as the hand velocity, supporting the view that neural encoding in MI is best understood at a

population level.
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Introduction

The search for efficient representations of the neural code has
been a central problem in neuroscience for decades (Adrian,
1926; Rieke et al., 1997). Given some experimentally observable
signal w (e.g., a sensory stimulus, or movement), we want to
predict whether a given neuron will emit an action potential.
Because it is unreasonable to expect perfect accuracy of these
predictions, the true goal is to understand p(spike|#), the spiking
probability given .

In the primary motor cortex (MI), for example, if w is taken to
be a snapshot of the position or velocity of the hand at time ¢, then
the observed tuning is often modeled by the following simple
linear description:

p(spike(t)|w) ~k-w + b, (1)

where k - # denotes the dot product between the vectors k and i,
b is the baseline firing rate, and k is a two-dimensional vector
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whose magnitude reflects the “tuning strength” of the cell and
whose direction is the “preferred direction” (PD) (Georgopoulos
etal., 1982, 1986; Kettner et al., 1988; Moran and Schwartz, 1999;
Paninski et al., 2004). (Tuning functions of form 1 are often
described as “cosine” because of their sinusoidal appearance in
polar coordinates.)

The linear Model 1 predicts the firing rate reasonably well
given that the hand is in a certain position, or moving at a certain
velocity, at a single time sample. It does not, however, provide a
method of combining this information across time samples: in
general, we want to understand the firing rate given the position
and velocity at all relevant times, that is, given the full time-
varying hand trajectory (Ashe and Georgopoulos, 1994; Fu et al.,
1995). Furthermore, we want to know how this firing rate de-
pends on the concurrent activity of neighboring cells in the MI
neural network (Maynard et al., 1999; Tsodyks et al., 1999; Harris
etal.,2003). This is clearly a more difficult problem: for any given
cell, we need to estimate the spiking probability not just over the
two-dimensional spaces of all possible velocities or positions, but
rather over the much higher-dimensional space of all possible
hand trajectories and activity patterns of the MI network.

Here we analyze the tuning properties of MI cells recorded, via
multielectrode array, from macaque monkeys performing a
visuomotor random tracking task (Serruya et al., 2002; Paninski
et al., 2004). We introduce a statistical model to capture the de-
pendence of the activity of an MI cell on the full time-varying
hand trajectory and on the state of the MI network; this model
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shares some of the simplicity of Model 1
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tion or velocity sampled at a single fixed 0 z 4
time delay) can be strongly nonlinear;
these nonlinearities, in turn, have predict-
able and measurable effects on tuning for
position and velocity. Finally, the activity
state of neighboring cells in the MI net-
work has an impact on the firing rate of a
given cell greater than that predicted by
the overlap in position or velocity prefer-
ences in Model 1.

Materials and Methods

Experimental procedures. We followed experi-
mental procedures described previously (Ser-
ruya et al., 2002; Paninski et al., 2004). Briefly,
three monkeys (one Macaca fascicularis and
two M. mulatta) were operantly conditioned to
perform a pursuit tracking task in which the
subject is required to manually track a ran-
domly moving target on a computer screen,
under visual feedback. The target moved ac-
cording to a filtered Gaussian noise process,
with mean hand speed ranging from 2.5 to 5
cm/sec over 11 experiments. The hand position
was sampled at 167 Hz using a digitizing tablet
(Wacom Technology, Vancouver, WA).

When the monkeys were adequately trained,
a microelectrode array (Bionic Technologies,
Salt Lake City, UT) was implanted in the arm
representation of MI. All procedures were in
accordance with Brown University guidelines.
During a recording session, signals were ampli-
fied and sampled (30 kHz/channel) using a
commercial package (Bionic; Cyberkinetics,
Foxborough, MA). Off-line spike sorting was
performed to isolate single units; only well iso-
lated single units with signal-to-noise ratios
>2.5 were analyzed further. Between 4 and 21
well isolated single units were recorded simul-
taneously during any given experiment (122
cells). Of these units, 20 were recorded on the
same electrode as another cell; exclusion of
these same-electrode cells had no qualitative ef-
fect on our results.

Analysis. Our analysis is based on the following encoding model (Fig.
1), a direct generalization of Model 1:

Figure1.

p(spike(t)|w, 1) = flk - + a- 7). (2)
In this probabilistic “cascade” model (Simoncelli et al., 2004), a cell-
specific nonlinearity fis applied to the sum of two terms: one that models
the dependence of the activity of the cell on the hand trajectory (k - #),
and one that models the dependence on the activity of the “neighbors” of
the cell in the MI network (& - 7). Here k * i corresponds to a linear
filtering operation applied to the hand trajectory vector w (formed by
appending the horizontal and vertical hand position signals, sampled at
10 Hz for 300 msec before and 500 msec after the current firing rate bin
). The linear filter k is chosen to extract as much information as possible
about the firing rate of the cell from the trajectory w (see below), just as
the vector k in the linear Model 1 is chosen to match the preferred
direction (and to discard the nonmodulatory component of the velocity
w orthogonal to Z); thus, the filter k can be thought of as the preferred
trajectory of the cell. Finally, 7 is a vector of the spike counts of the
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Predicting Ml spike trains from dynamic hand position signals and neighboring neural activity. Top left, Horizontal (x)
and vertical (y) hand position as a function of time, it.. Top right, Raster activity of simultaneously recorded neighbor cells 7i(t).
Hand position signal is linearly filtered by the preferred trajectory?(left; see Fig. 2 for conventions), and neighbor cell activities are
linearly weighted by weights  (right) to produce kinematicand neural filtered signals k- (1) anda-i(1), respectively (third row).
Filtered signals are summed, then nonlinearly is transformed by f (fourth row) to produce predicted firing rate (fifth row). True
observed target spike train shown in bottom. Figures display a randomly chosen segment of experimental data: occasional
discontinuities in kinematic signal attributable to breaks between behavioral trials.

simultaneously recorded neighbor cells, with each element #; being the
number of spikes observed from neuron 7 in a time bin (of adjustable
width) centered at time £, and a the vector of neural weights, with a; being
the weight ascribed to the activity of cell 7.

Models of type 2, with an arbitrary nonlinearity after a linear filtering
stage, have been used frequently in the sensory domain (Chichilnisky,
2001; Simoncelli et al., 2004). The major advantage of this analysis is that
it does not require a priori knowledge of the underlying nonlinearity f;
rather than imposing a parametric form on the tuning function, the
analysis discovers the correct nonlinearity fautomatically (Chichilnisky,
2001; Paninski, 2003a; Simoncelli et al., 2004). These techniques are
therefore more general and powerful than the usual regression methods,
which assume a linear relationship between the regressors and the vari-
able to be predicted (Ashe and Georgopoulos, 1994).

To estimate the kinematic and neural weights 7(, ﬁz, and 4 [these linear
weighting parameters are of mathematically identical form and can thus
be estimated using identical methods (Simoncelli et al., 2004)], we used
standard techniques based on spike-triggered regression (Chichilnisky,
2001; Shoham, 2001), which contain two essential computational steps.
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First, regression was used to obtain an estimate of the preferred trajectory
kask= (EGW'w)) ~ 'Eiyjspire(W), with the first term being the inverse of the
correlation matrix of the kinematics vector w and the second term being
the cross-correlation of w with the spike train (the latter reduces to a
conditional expectation because of the binary nature of the spike train).
When fitting 4 in the absence of kinematic information (7< set to 0), we
replaced w in the above with the neural activity vector 7; when fitting a
and 71 together, # is replaced by the vector formed by appending w and 7
(other behavioral parameters may be included here by a similar append-
ing operation).

Second, the nonlinear encoding functions f{k - #) = p(spike|k - i) were
estimated using an intuitive nonparametric binning technique (Chich-
ilnisky, 2001; Shoham, 2001). Briefly, given k, for any possible value u of
the filtered signal k - #, we found all times {¢}, during the experiment for
which & - #(t) was observed to approximately equal u; the conditional
firing rate f{u) was then estimated as the fraction of time bins {t},, that
contained a spike (for pictorial representations of this process, see Chich-
ilnisky, 2001; Shoham, 2001). In this procedure, f{¢1) has an underdeter-
mined scale factor [because a scale factor in the argument u-axis can
always be absorbed by rescaling f itself (Chichilnisky, 2001)], which we
standardized by mapping the first and 99th quantiles of the observed
distributions of u (with u defined as k-, Ez © W, or (7( w4+ a-n),
depending on the context) to —1 and 1, respectively, in all plots.

To further establish the validity of our results, we compared the filter
coefficients calculated using the basic regression-based procedure with
ones estimated using alternative, more general methods (Paninski,
2003a), including direct optimization of k= argmax; M(e * w; spikes),
with the “modulation function” M(.;.) measuring the total modulation
of the firing rate along any arbitrary kinematic filter € (for a precise
definition of M, see Paninski, 2003a). The alternative methods consis-
tently led to nearly identical solutions (which were, in turn, also insensi-
tive to the precise choice of the modulation function M). The direct
optimization method was also used to search for additional modulatory
filters (the regression solution provides only one such filter) (see Fig. 5),
using {k, k,} = argmaxg, s M(¢é, + W, e, * w; spikes), with M now measuring
the modulation along the linear subspace spanned by the vectors {¢,,¢,}
and ¢, restricted to be orthogonal to é, to prevent degeneracy. Again,
techniques based on spike-triggered covariance (Brenner et al., 2001;
Simoncelli et al., 2004) gave similar results. All plots of estimated firing
rates f, and all of the reported information values, are cross-validated (the
models were fit using a subset of the data and then tested on a nonover-
lapping data subset), ensuring that our analyses provide an accurate
summary of how well the model is predicting novel spike trains, not
simply reproducing previously observed data. In particular, the effects
described here cannot be explained as a result of overfitting to the extra
parameters k or 4.

Because the hand position and velocity signals varied relatively slowly
(the autocorrelation timescale of the velocity was =200 msec), we down-
sampled these signals to 10 Hz (qualitatively similar results were obtained
at higher sampling frequencies). All neural predictions were performed
at a much finer timescale (5 msec). Because hand velocity varies much
more quickly than the position, we represented the signals # and kin the
velocity domain (with a single position sample added at zero lag for
completeness) (see Fig. 2). This permitted us to analyze the preferred
trajectory k with greater temporal resolution (in mathematical terms, this
velocity-based representation is a linear change of basis and therefore
entails no loss of information or generality). Tuning quality did not
improve with observations of the velocity or position at additional time
lags once w included lags up to 300 msec before and 500 msec after the
current spike bin.

To further examine and summarize the properties of the encoding
nonlinearity, we fit f with various parametric models using maximum
likelihood. Several forms for the parametric tuning curves were exam-
ined, including power-law, nonsaturating sigmoids, and half-wave recti-
fying models; the exponential model discussed here was the simplest
(smallest number of parameters) that we could find that adequately rep-
resented the observed tuning functions, as measured by the likelihood
the model assigned to a sufficiently large sample of novel (cross-
validated) spike trains. Cells were declared untuned if their (cross-
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validated) tuning functions were not significantly nonconstant, as mea-
sured by a t test comparing the average firing rate observed for positive
values of k - i with the rate given negative values. A similar test was
constructed for nonlinearity: the test data were split into thirds based on
k - #, and we tested whether the firing rate in the rightmost third was
significantly greater than a linear extrapolation through the mean firing
rates in the leftmost and center thirds. All hypothesis tests were per-
formed at p = 0.05.

We quantified the predictability of the spike train given w and/or 7 by
computing the expected conditional log-likelihood of observing a spike
in a given time bin, normalized by the a priori log-likelihood (that is, the
average baseline log-likelihood given no knowledge of w or #) (Harris et
al,, 2003); this expected log-likelihood provides a useful measure of the
dependence between these variables and is also known as the mutual
information (Cover and Thomas, 1991), as follows:

I(spike; k + )

p(s|7< W=u)
p(s)

>

1
=fdup(l?-fv=u) Ep(s|E-Vv=u)logz
s=0

with s = 1 or s = 0 depending on whether a spike was observed or not. We
chose to use this information-theoretic, likelihood-based measure
(rather than, for example, mean-square error or variance-based mea-
sures) for three reasons: first, information-theoretic measures are at least
as interpretable as the more classical variance-based approaches (Rieke et
al,, 1997), in many cases agreeing better with common-sense notions of
“informativeness” or “noise” (Cover and Thomas, 1991; Rieke et al.,
1997) (in particular, the information-theoretic measure does not depend
on any linear relationship between the variables of interest); second,
likelihood-based methods are intimately connected to modern tech-
niques for analyzing point processes (Brown et al., 2004) (of which spike
train data are a canonical example); finally, and most importantly,
likelihood-based measures are independent of bin size, whereas
variance-based methods depend critically on choosing a proper smooth-
ing factor to estimate the firing rate given a single spike train. In partic-
ular, for the small neural bin widths used here, the sparse binary nature of
the spike train causes the correlation coefficients between the spike train
and the expected firing rate predicted by the model to be misleadingly
small. Nevertheless, the reader may compare this with Shoham (2001),
who reports correlation coefficients on the order of 0.6 between the
predicted activity of the cascade model and suitably time-smoothed ver-
sions of the observed spiking activity.

The simple single-filter character of Model 2 makes it easy to compute
the information I(spike; k - #), by simply plugging in the estimated con-
ditional probabilities finto the equation for mutual information (Cover
and Thomas, 1991); because the number of data samples (~107) was
much greater than the number of bins (~107) in the histogram estimate
for f, bias correction of the information estimates was not necessary [bias
correction only becomes useful when the number of bins is approxi-
mately the same as or larger than the number of samples (Paninski,
2003b)]. It is important to note, however, that the information values
given, although represented in units of bits per second for normalization
purposes, are not valid estimates of the information rate (Cover and
Thomas, 1991) between the dynamic signals spike(t), w(t), and 7(t); the
information values presented here (the information between spike(t) and
k- Ww(t) at a single time slice) will in general overestimate the information
rate [the information between spike(t) and k- w(t) at all possible time
slices, which is generally much more difficult to estimate (Rieke et al.,
1997)] because of the strong temporal autocorrelations (redundancies)
in these signals. Thus, the values given here should be interpreted as a
measure of the statistical dependence between spike, , and # and not as
a measure of the information-theoretic capacity of the MI network (Pan-
inski et al., 2004).

To determine the minimal number of delay samples needed to repre-
sent the information extracted by the full preferred trajectory of a given
cell k (see Fig. 4), we used the following procedure: first, we chose the
optimal single delay 7 by maximizing the information I(spike; w(7))
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Figure 2.  Diversity of estimated preferred trajectories k. Example preferred trajectories k
estimated for three different cells. Asterisk indicates contribution of position (in centimeters) at
zero time lag, and solid line gives contribution of velocity (in centimeters per second) at the
different time lags shown; error bars represent SE. (For why this representation of the preferred
trajectory k was chosen, see Materials and Methods.)

[where w(7) denotes the two-dimensional hand position sampled at time
lag 7] for all 7in the time interval —1 = 7 = 1 sec (we found previously
this time interval to be sufficient to capture the large majority of optimal
delays; cf. Paninski et al., 2004, their Fig. 11). Then we added additional
delays iteratively until the cross-validated information I(spike; {w(T,),
W(T,), . . }) stopped growing; similar results were obtained whether or
not the delays 7 were constrained to be adjacent. The optimal number of
delay samples are plotted in histogram form in Figure 4; similar results
were obtained by Shoham (2001) using a different technique involving a
Bayesian information criterion instead of the cross-validation method
used here.

Results

We will describe our findings in terms of the encoding Model 2
introduced in Materials and Methods. Note that this model re-
duces exactly to the classical expression 1 when the encoding
function f has the linear form f(u) = mu + b, the preferred
trajectory k is restricted to extract only position or velocity at a
single time point from the hand-trajectory signal w, and the
neighboring neural contribution is ignored (i.e., the neural
weight vector 4 is set to 0). Thus, the new Model 2 allows us to
examine (1) the dependence of MI activity on the full hand tra-
jectory (through the preferred trajectory k) and not just the po-
sition or velocity at a fixed time, (2) the nonlinear encoding im-
plemented by MI cells (via f), and (3) the dependence of the firing
rate on the activity of neighboring cells in the MI network (via the
interneuronal terms a4). We discuss each component in turn
below.

Preferred trajectory model R

The estimated preferred trajectories k from three sample cells are
shown in Figure 2; the first cell can be approximated as a hori-
zontal position-only encoder, whereas the second encodes a mix-
ture of horizontal position and vertical velocity, and the third the
acceleration in the upper right-hand direction (because the ve-
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locity weight of this cell is negative at t = 0 and positive at t = 100
msec). The observed preferred trajectories combine kinematic
information in a diverse manner; some cells encode strictly posi-
tion and some strictly velocity, although many encode more
complicated combinations of the full trajectory, sampled at mul-
tiple time lags.

In Figure 3, we examine the information about firing rate
carried by a single sample of (two-dimensional) position or ve-
locity, relative to the information in the full filtered signal k- .
The new model captures significantly more information about
the spike train than does either position or velocity alone (Fig. 3,
left, middle). In addition, we find velocity-tuned cells to be
slightly more prevalent in our population, but most cells provide
information about position as well, with some position-tuned
cells providing negligible velocity information, supporting and
extending previous observations (Ashe and Georgopoulos, 1994)
(Fig. 3, right). The lack of any strong clustering in these plots
supports the argument that MI cells do not fall into distinct
groups of pure velocity or position encoders (Todorov, 2000); a
similar lack of clustering is evident if one plots the distribution of
weights of position versus velocity or acceleration (that is, the
corresponding elements of the preferred trajectory k), because
the relationship between these weights is predictive of the infor-
mativeness of the cell for these variables (data not shown).

We next investigated the minimal number of delays necessary
to capture the information in the full preferred trajectory k (Fig.
4). Again, we find a fair degree of heterogeneity (Fig. 4, top): in
some cells (~25% of our population), all of the information in k
was contained in a single position sample, whereas for others,
four or more filter delays were necessary (24 of 122 cells, 20%,
met the criterion that the information contained in the optimal
number of samples was at least 25% larger than the information
contained in the most informative three samples), indicating that
these cells are poorly approximated as simple position, velocity,
or even position-and-velocity-and-acceleration encoders. More-
over, individual-cell kinematic informativeness is significantly
positively correlated with the optimal number of delay samples
(Spearman’s rank correlation test).

Finally, just as in the linear Model 1, changing the signal # in
a vector direction orthogonal to the estimated k does not signif-
icantly modulate the activity of the cell (Fig. 5); the median ratio
of information contained in k + # relative to the information in
k, -, with k, being the next most informative filter orthogonal to
7(, was =10 (for additional details, see Paninski, 2003a). Thus, a
single number, k-, suffices to capture the modulatory effects of
the full dynamic hand trajectory #; in other words, the full en-
coding surface p(spike|w) is well modeled as a (possibly curved)
plane, with one main axis (and one corresponding possible vector
of curvature), k.

Superlinear encoding function _
We next characterized the encoding function f = p(spikelk * )
(Fig. 6). Of the significantly tuned cells (one-sided t test; see
Materials and Methods; 109 of 122, or 89%), all but one had
monotonic encoding functions f (visual inspection), and approx-
imately one-third of these functions were significantly superlin-
ear (curved upward; one-sided ¢ test; 38 of 109, 35%). Moreover,
the degree of superlinearity was strongly correlated with the in-
formativeness of the cell: of the 40 most informative cells in our
population, 29 (73%) had significantly superlinear encoding
functions. Thus, the cells best modulated by (and most informa-
tive about) the hand trajectory signal are the most superlinear.
We found that this nonlinearity was well fit by a simple expo-
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component k - i, the cell appears to be
completely untuned, with a constant en-
coding function f (that is, linear, with 0
slope).

An example of this linearization effect
in our neural data is given in Figure 6b.
The neuron shown here appears to encode
position fairly linearly; only when we
choose k to be the preferred trajectory
does the full superlinear behavior of the
cell become apparent. Of our significantly
superlinear cells, only 33% had signifi-
cantly superlinear encoding functions f
when k was allowed to extract just the pre-
ferred (two-dimensional) velocity at a sin-

tended to fall even farther above the diagonal).

gle time point (median ratio of full kine-
matic model m to position-only and
velocity-only model m: 2.8 and 1.9, re-
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information in full preferred trajectory k.

nential model f(u) = be™ (with u abbreviating k - #, the slope
parameter m being an index of tuning strength, and b again de-
noting the baseline firing rate): this exponential model predicted
novel spike trains as well as or better than the full histogram
model (Fig. 6a,b, dark traces) in 83% (90 of 109) of our signifi-
cantly tuned cells, with only a median 5% log-likelihood loss in
the remaining 19 cells. As expected, the tuning strength parame-
ter m was significantly correlated with both the informativeness
of the cell and its degree of superlinearity. Thus, the relevant
tuning structure in f was captured sufficiently well by a highly
compact two-parameter function.

This superlinearity has some important implications for the
tuning properties of MI cells, as illustrated in Figure 6. First, the
degree to which a cell will appear to code the movement signal
superlinearly will depend strongly on the agreement between the
chosen prefilter k and the true preferred trajectory of the cell. To
see why, imagine a neuron whose firing rate is exactly described
by Model 2: for this hypothetical cell, tuning will be strongest and
most superlinear along the vector , because the tuning along any
other vector (k + km, for example, with km orthogonal to k) will
be made smoother and shallower (that is, more linear and w1th a
smaller slope, or gam) by the addition of the component k,,, * i#,
which (like k - win Fig. 5) does not modulate the firing rate of the
cell and hence effectively acts as a noise term. Figure 6¢ provides a
simple demonstration of this effect using simulated data (for
additional mathematical details, see Paninski, 2003a). In the ex-
treme case when the noise term k,,. - w dominates the tuned

err

Information captured as a function of number of delay samples. Top, Each trace corresponds to the information versus
number of delay samples for a single cell; asterisk denotes optimal number of delays. Only a randomly chosen subsample of cells
is shown here, to avoid overcrowding. Bottom, Histogram of minimal number of filter delays per cell necessary to capture

spectively; both significantly =1, one-
sided f test).

Second, the near-planar form of the
observed encoding surfaces p(spike|i)
(Fig. 5) is, in a sense, the origin for the
familiar near-sinusoidal shape of velocity
directional tuning curves (mean firing
rate as a function of the hand velocity an-
gle), for the same reason that the exactly
planar encoding surfaces in Model 1 lead
to exactly cosine velocity directional tun-
ing curves. In addition, Model 2 predicts
that, for cells with superlinear f, these tun-
ing curves will generally peak more
sharply than the cosine function (Fig. 6d),
because superlinear encoding functions f
will “stretch out” the tuning curve verti-
cally, thus sharpening its peak. We found
that the median width at half-height of these curves was 0.837
radians, significantly less than 7r, the width expected of sinusoidal
tuning (one-sided t test); moreover, the tuning strength param-
eter m was significantly negatively correlated with the tuning
curve width (Spearman’s rank correlation test).

Third, the superlinear, approximately exponential form of the
observed encoding functions f predicts that velocity direction
tuning curves will depend approximately multiplicatively on the
position of the hand (and vice versa), even during continuously
varying behavior (Caminiti et al., 1990; Scott and Kalaska, 1997;
Sergio and Kalaska, 2003). (This prediction follows from the fact
that the exponential function converts addition into multiplica-
tion, i.e., the linear filter term k - i = kpas Wpos T Kyer* Woor & - o
which adds the posmon and velocity contributions, is converted
into ek W = glpos + wwpos el - vel , which multiplies the
position and velocity contributions.) To test for this effect (Fig.
6d), we constructed two tuning curves for velocity direction: one
computed using only the half of the velocity data recorded while
the hand posmon was posmvely oriented with k (that is, kpos

Wpos = kx,pus pos T ky pos* Wy_pos = 0), and the other when the
hand was in the opposite (negative) half of the workspace.
Although the median position difference between these two con-
ditions was quite small (3.5 cm), the positive-position tuning
curve was modulated by a factor of 3 over the negative in the cell
shown in Figure 6d. Of our 38 significantly superlinear cells, 11
(29%) showed a modulation factor of >50%; the median mod-
ulation in superlinear cells was 16%. Finally, this modulation

——
5 6 7 8 9



8556 - J. Neurosci., September 29, 2004 - 24(39):8551— 8561

<k,w>

10

-1 <k2 L W> !

Figure 5.  Asingle preferred trajectory kis sufficient for the representation of the encoding
function f. Firing rate of one example cell as a function of two filtered signals, k-wand }3 W,
with k, chosen to be the next most informative such filter, restricted to be orthogonal to k (see
Materials and Methods); y- and x-axes index & - i and k, - i, respectively, and color axis
indicates the conditional firing rate (in hertz) given these two variables. Contours of firing rate
function are approximately linear and perpendicular to the k axis: a one-dimensional function
flk - ) captures the relevant structure of the tuning of this neuron (Paninski, 2003a).
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Figure 6. lllustration and implications of the nonlinearity of MI cells. a, Example encoding
function f(mean = SE), with corresponding exponential fit. b, Observed encoding function ffor
filter set to extract optimal , position, or velocity along preferred direction. Tuning becomes
sharper (more nonlinear) and observed dynamic range increases as chosen filter becomes closer
to optimaIE. ¢, lllustration on simulated data of linearization effect on sharpness of nonlinearity.
Model cellis perfectly binary, firing with probability one or zero depending on whether k-wis
larger or smaller than a threshold value. As the ratio of Ze,, to },,ue becomes larger (i.e., as we
project onto an axis that is farther away from the true k), the observed nonlinearity becomes
shallower and smoother, becoming perfectly flat in the limit as Ee,,/ }m becomes large. d,
Dependence of velocity direction tuning curves (expected firing rate as a function of velocity
angle) on hand position. Gray curve was computed using only velocities that were observed
when hand position was to the left of midline; black curve used only rightward positions. Cosine
curve (dashed) shown for comparison; observed tuning is significantly sharper than cosine

(one-sided t test).
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factor was significantly correlated with the tuning strength m in
our tuned cell population.

Figure 7 illustrates this gain-modulation effect from a differ-
ent point of view. Here we compare the firing rate predicted by
the full superlinear kinematic encoding model with the rate pre-
dicted by three simpler models: the optimal linear model (fit by
standard linear regression), the optimal nonlinear model based
only on a single (two-dimensional) position sample, and the op-
timal nonlinear single-sample velocity model (for additional
comparisons, see Shoham, 2001). Three features of these predic-
tions are clearly visible: first, the optimal full superlinear model
resembles the optimal linear model in the moderate-activity reg-
imen (~1-10 Hz). However, the superlinear prediction, as ex-
pected, displays a strong expansion for higher firing rates (as
visible in Fig. 6) and compression for low firing rates (in which
the linear firing rate prediction often becomes negative); this
increased dynamic range leads to improved predictions [note the
increased similarity between the predicted firing rate of the full
model and the distribution of spikes in the observed spike train in
Fig. 7, bottom; more quantitatively, for this cell, the full informa-
tion I(spike; k- ) was greater than twice that available in either
position or velocity alone, a not atypical case given Fig. 3]. Finally,
the full superlinear prediction for this cell is approximately pro-
portional to the product of the position- and velocity-only predic-
tions: the full-kinematic trace follows the rapid variations of the
velocity trace, modulated by the slower changes of the position,
which acts generally like a gain signal here.

We summarize the kinematic encoding properties of the
model in Figure 8. The top row shows a “spatiotemporal” tuning
function (STTF) for velocity; this is the mean observed firing rate
of a single cell, given the (two-dimensional) velocity at a time
sample 7 seconds in the future (Paninski et al., 2004). In the
middle row is the STTF predicted by Model 2; despite its simplic-
ity and small number of free parameters, Model 2 accounts for all
of the major features of the observed STTF, including the onset
and offset of the strongest tuning (at 7 ~ 100 msec), the relative
strength, approximately planar shape, and orientation of the spa-
tial tuning function at each time lag; finally, surrogate STTFs,
constructed using simulated spike trains sampled from the
model, mimic the observed variability in the STTF (Fig. 8,
bottom).

Instead of a single PD per neuron, Model 2 effectively incor-
porates a sequence of PDs, varying with the time lag 7 (Baker et
al., 1997). As found by Paninski et al. (2004), MI STTFs typically
show a particularly simple form of PD dependence on 7 in the
context of tracking behavior, PDs essentially do not rotate as a
function of T but rather are modulated in gain, with possible flips
when the gain modulation becomes negative. Hints of more com-
plex rotational behavior are occasionally exposed by the analysis
of Figure 8 (see especially the middle row; however, note that this
more subtle rotational behavior was always weak and was only
visible in a minority of our cells, consistent with the results of
Paninski et al., 2004). Across our cell population, the model-
based STTF predicts the observed STTF >50% more accurately
(in the sense of squared error), on average, than does the real
STTF constructed from held-out training data (essentially be-
cause the model provides a smoother, less-variable STTF than is
available from the original binned neural data). In summary,
Model 2 provides a description of MI kinematic tuning that is
both more accurate and more compact than was available
previously.
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one-sided t test] (Fig. 9b); nonetheless,
this increase is of relatively small magni-
tude overall. Close examination of Figure
9b reveals two generally distinct subpopu-
lations: most cells show no significant in-
formation increase given the observation
of 71 (indeed, many display a slight de-

crease of information as a result of overfit-
ting effects); however, 16 of our 109 tuned
cells (15%) do show a significant increase

| (in which significance is empirically de-
‘ll fined as the negative of the envelope con-
taining all of the negative information-
difference points, extending down to
approximately —0.025 bits/sec). An ex-
ample is shown in Figure 9¢; for this cell,
inclusion of # significantly increased the
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Figure 7. Comparison of firing rate predictions; example of multiplicative gain-modulation effect. Top, Firing rates predicted

by full nonlinear kinematic model, best linear model, best nonlinear velocity model, and best nonlinear position model. Bottom,
True observed spike train (asterisks) and time-smoothed firing rate (solid). Firing rate smoothed here with a Gaussian kernel for
which the width was chosen to approximately match the timescale of firing rate variations in top panel (for straightforward

comparisons).

Interneuronal dependencies
The final component of Model 2 involves the ongoing network
activity in nelghborlng cells, 72 (Fig. 9). To begin, we consider this
neighbor activity in the absence of kinematic information, i.e., k
set to 0 in Model 2. In our full cell population, the network
activity 7 gives approximately the same amount of information as
does an instantaneous sample of the hand position or velocity
(Fig. 9a), despite the fact that we are observing fewer than 25 cells,
a tiny fraction of the full MI neural network. (This figure com-
pares with velocity information, but the corresponding plot for
position is qualitatively similar; recall Figure 2.) Because noisy
transformations always decrease information (Cover and
Thomas, 1991), this finding contradicts the view of MI activity as
a simple noisy transformation of the hand velocity; a straightfor-
ward explanation is that MI cells are correlated because of com-
mon sources of excitation beyond that expected from overlaps in
velocity tuning alone (i.e., overlaps in the full preferred trajectory
k) and not because of interneuronal interactions per se (Hatso-
poulos et al., 1998; Lee and Georgopoulos, 1998; Oram et al.,
2001). This argument is supported by a comparison of the scales
of Figures 9a and 3: the neural ensemble information I(spike; a
n) tends to be smaller than the full kinematic information I (spzke,
k- Ww). Moreover, the 1nterneuronal weights a (when fit in the
absence of kinematic information, k= 0) are highly correlated
with the overlap in the preferred tra]ectory k [data not shown;
“overlap” measured here by cos Y(ky * k;), the vector angle be-
tween the preferred trajectory k of the target cell and that of cell i].
As expected, this kinematic overlap was a strong predictor of the
information one cell would carry about another (Spearman’s
rank correlation test), and the informativeness of the network
alone, I(spike; a - 1) was positively correlated with the number of
cells observed (Nicolelis et al., 2003; Paninski et al., 2004).

What happens when both neural and kinematic information
are included in the model (i.e., @ and k nonzero) simultaneously?
We found that observing 7 can significantly increase the predict-
ability of the activity of a given cell, even if one has already ob-
served the full kinematic 51gnal w [the information difference
Ikw+a-n spike) — 1(k « spike) is significantly positive;

predictability of the spike train, as mea-
sured by mutual information and by the
dynamic range of the observed encoding
function f. To give a sense of scale, the cell
illustrated here has an information differ-
ence (cf. Fig. 9b) of 0.07 bits/sec. The in-
formation gained by appending 7 to w is
invariably approximately one order of
magnitude smaller than that available from the kinematic signal
w alone; thus, the distribution of changes in information is
mainly skewed to positive values rather than strongly shifted to-
ward the positive.

Finally, when we examine the relationship between the infor-
mativeness of a cell and the bin size over which we observe n; (Fig.
9d), the information value I(spike; a - 1) of the neural-only model
slowly increases as #; is allowed to average over a larger time bin,
up to an asymptote at 500 msec (i.e., where 7,(¢) is defined as the
spike count in the interval [ —250, 250 msec] before and after the
current 5 msec time bin ¢). In addition, a significantly large (¢ test)
proportion of cells show an information increase when the bin
size is increased between any of the bin widths shown in Figure
9d: 10, 50, 100, 200, and 500 msec. This increase of information
with bin size is expected, because counting spikes over a larger
time period should increase the information; the observed slow
growth of this neural ensemble information with bin size may be
interpreted as reflecting the long autocorrelation timescale of the
MI network driven by the underlying kinematics w.

A different pattern is evident when c0n51der1ng the full
kinematic-and-ensemble information I(spike; k-w+a- 1): the
information difference shown in Figure 9d increases quickly with
bin size, reaching a maximum by 100 msec, with a statistically
insignificant slight decrease as the bin width increases beyond 200
msec. Thus, in contrast to the neural-only case (k = 0), observing
the neighbor spike trains over time windows of length greater
than ~100 msec does not enhance the predictability of the activ-
ity of the cell. In addition, the interneuronal weights a; were
correlated much more weakly (although still significantly; Spear-
man’s rank correlation test) with the kinematic vector angle over-
lap when fit in the presence of kinematic information ( k nonzero)
than in its absence (k 0).

Discussion

We have presented a compact description of the nonlinear pop-
ulation encoding of hand trajectory in MI. This description, a
direct generalization of the canonical cosine-tuning Model 1,
provides more accurate predictions of MI activity and captures
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Comparison of observed and model spatiotemporal tuning functions. Top, Observed STTF; mean firing rate of a single cell, given the (two-dimensional) velocity 7seconds in the future (Paninski et

al., 2004). Middle, Modeled STTF constructed from average firing rate predicted by Model 2. Bottom, Simulated STTF constructed by stochastically sampling spike trains from Model 2.
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Figure9.  Observing neighbor activity increases the predictability of Ml neurons. a, Compar-
ison of information values for neural-only (no kinematic input; k = 0) versus velocity-only (no
neuralinput; @ = 0) models. Conventions as in Figure 2; for fair comparison, information values
here are based on the largest bin width shown in d, 500 msec. b, Comparison of information
values for full model (kinematic data i augmented with neighboring neural activity 7i) versus
kinematic-only model (@ = 0). Significantly more points fall above the equality line (one-sided
t test; note logarithmic scale used to expose structure in scatter plot here). ¢, Estimated encod-
ing functions ffor kinematic-only (gray trace) versus full model (black). Note the differences in
dynamic range of two curves. Cell illustrated here is marked with an “x” in . d, Effects of bin
width on network informativeness in the presence of kinematic information [k nonzero; solid
traceis median == SEinformation difference I(k - W + a-1i; spike) — (k- Ww; spike) over all cells,
plotted against bin width used to define n] and without [dashed trace is /(@ - i; spike), e k=0].

several novel aspects of MI coding: the heterogeneity of the pre-
ferred trajectories k; the superlinearity of the encoding function f
(and the gain-modulation implications thereof); and the precise
relevance of interneuronal dependencies beyond simple pairwise
correlations. Each of these components has been discussed pre-
viously in some form in the literature; our contribution is a de-
tailed quantification of these effects and a synthesis into a well-
defined, compact statistical model.

Preferred trajectory model

Our results are based on a statistical cascade model of spiking
activity, with a linear filtering stage (typically interpreted as a
“receptive field” in sensory studies and interpretable as a pre-
ferred trajectory here) followed by a probabilistic nonlinearity
(Yamada and Lewis, 1999; Brenner et al., 2001; Chichilnisky,
2001; Shoham, 2001; Touryan et al., 2002; Paninski, 2003a; Simo-
ncelli et al., 2004). This cascade analysis allowed us to simulta-
neously model the combination of multiple kinematic parame-
ters from all relevant time delays, in an optimal and parsimonious
way; this “global” approach is necessary for the accurate model-
ing of MI activity, which multiplexes diverse kinematic parame-
ters with heterogeneous time delays (Georgopoulos et al., 1984,
1986; Porter and Lemon, 1993; Moran and Schwartz, 1999; Ser-
gio and Kalaska, 2003; Paninski et al., 2004), allowing MI to both
predict motor output and encode sensory feedback.

Our findings on the heterogeneity of MI tuning and the rela-
tive contributions of velocity and position to MI activity (Figs. 2,
3) are consistent with previous results using multiple-regression
techniques (Ashe and Georgopoulos, 1994; Fu et al., 1995). Our
previous work (Paninski et al., 2004) quantified similar observa-
tions on the “spatiotemporal” tuning properties of MI cells, using
information-theoretic tools instead of the correlation-based
methods used previously; we extended this work here by exam-
ining how best to combine the hand position or velocity at mul-
tiple time lags (Fig. 4) and not just individual lags as used by
Paninski et al. (2004). Figure 8 illustrates that the current ap-
proach provides an equivalent but simpler account of MI spatio-
temporal tuning properties. Although the filter-based Model 2
might appear more complex than the classical Model 1, Model 2
is really no more difficult to use because of the simplicity of the
linear filtering operation; as noted above, the linear Model 1 is a
special case of Model 2.

Our results are also related to spike-triggered averaging work
(Fetz and Cheney, 1980; Morrow and Miller, 2003) connecting
MI spikes to peripheral muscle activity. It will be important to
dissociate these effects and quantify their relative importance for
MI activity, as performed here for kinematic parameters and net-
work activity; very similar modeling methods could be applied to
the analysis of EMG and other behaviorally relevant signals, in-
cluding, for example, forces, joint angles, and torques (Evarts,
1968; Humphrey et al., 1970; Kakei et al., 1999).
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Superlinear encoding function

The cascade methodology allows us to coherently combine dif-
ferent kinematic features to predict neural activity. Even more
importantly, these techniques generalize previous attempts to
model these cells using multiple-regression methods (Ashe and
Georgopoulos, 1994; Fu et al., 1995), by allowing us to discover
and quantify, in a nonparametric (relatively assumption-free)
way, the nonlinear effects of these variables on MI activity. We
found that approximately one-third of MI cells (and the majority
of the best-tuned cells) encode the trajectory signal superlinearly.
This superlinearity, in turn, has important implications for more
classical descriptions of the MI neural code (Fig. 6); the superlin-
earity was reasonably well modeled by a simple exponential
transformation that sharpens MI directional tuning and leads to
a “gain modulation” effect whereby the dependence of neural
activity on velocity is modulated, approximately multiplicatively,
by the hand position. This result bears an interesting resemblance
to recent work by Hwang et al. (2003), who modeled their psy-
chophysical results using multiplicative interactions between
hand position and velocity; thus, our results could indicate a
neuronal correlate of multiplicative gain-modulated encoding at
the behavioral level.

Similar nonlinearities in MI tuning have been observed in the
literature but, to our knowledge, never investigated systemati-
cally. Rectification effects have been noted while fitting linear
surfaces to MI activity (Kettner et al., 1988; Todorov, 2000)
(compare with the negativity of the linear prediction in Fig. 7).
Our finding that superlinearity leads to sharper-than-cosine di-
rectional tuning curves (Fig. 6¢) is consistent with the results of
Amirikian and Georgopoulos (2000), who observed similarly
“stretched” tuning curves during reaching behavior; indeed, their
exponential-cosine model (Amirikian and Georgopoulos, 2000,
their expression 4) is the analog, in velocity direction-tuning
space, of our multivariate Model 2. Similarly, Schwartz and col-
leagues (Moran and Schwartz, 1999) found tuning asymmetries
between the preferred and opposite velocity directions (indicat-
ing similarly stretched deviations from sinusoidal tuning).

Note that the strength of this superlinearity is probably under-
estimated here. The superlinearity is partially obscured when one
considers only the instantaneous hand position or velocity and
not the full hand trajectory (Fig. 6); this “masking” effect of
choosing the non-optimal prefilter k helps explain why these su-
perlinearities have been underemphasized previously. Con-
versely, including information about joint angles, torques, or
other behaviorally relevant parameters could expose stronger,
possibly qualitatively different, nonlinearity. Different behavioral
settings might also expose additional nonlinearity, e.g., if the ob-
served range of k- wis increased [because functions f{ (k - ) that
appear quasi-linear over a small range of k - # might be strongly
nonlinear over larger scales].

Somewhat surprisingly, we found little nonlinear structure in
the encoding surfaces p(spike|w) in vector directions orthogonal
to k; these surfaces have a simple, near-planar form, with just one
possible vector k of (upward) curvature (Fig. 5). In the sensory
domain, in contrast, encoding surfaces with multiple axes of cur-
vature (along several receptive field-like vectors) are frequently
observed (Yamada and Lewis, 1999; Brenner et al., 2001; Touryan
et al., 2002; Rust et al., 2003). For example, complex cells in the
visual cortex are poorly modeled using the simple form Model 2,
because of the approximate phase-invariance of their responses;
instead, they are typlcally modeled using an expression such as
p(spikelw) = flk, + W, k, - ), with the receptive fields ky» K,
separated in- phase by 90° and £, a bowl-shaped (highly nonpla-
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nar) function [e.g., flu, v) = u? + v? (Simoncelli and Heeger,
1998)]. Again, additional nonlinearity might plausibly be ex-
posed after observing additional kinematic parameters; for ex-
ample, Caminiti et al. (1990), Scott and Kalaska (1997), and Ser-
gio and Kalaska (2003) observed not just gain-modulation effects
but rotation of preferred velocity directions under perturbations
of the arm posture larger than those considered here.

The physiological origin of this superlinearity is currently un-
certain. Biomechanical models of the motor plant predict non-
linear relationships between cortical activity and kinematic pa-
rameters (Mussa-Ivaldi, 1988; Todorov, 2000); other biophysical
sources of nonlinearity could include voltage-dependent sub-
threshold currents and network dynamics. Meanwhile, compu-
tational implications for gain-modulated coding have been stud-
ied extensively (Zipser and Andersen, 1988; Pouget and
Sejnowski, 1997; Salinas and Abbott, 2001); this previous work
has argued that multiplicative gain fields represent a neurophysi-
ologically plausible mechanism for implementing coordinate
transformations between representations of sensory inputs and
motor outputs. Our evidence for the presence of gain fields could
therefore indicate motor cortical involvement in sensorimotor
transformations, with MI operating as a computational (not
solely representational) map. Finally, the simple, monotonic
form of the observed nonlinearity seems advantageous for con-
trolling the multiple interdependent parameters underlying co-
ordinated movement (Mussa-Ivaldi, 1999).

Interneuronal dependencies

Recent technological advances have enabled simultaneous re-
cordings from many individual neurons (Cossart et al., 2003;
Harris et al., 2003; Nicolelis et al., 2003), necessitating the devel-
opment of methods capable of deciphering this complex popula-
tion data. We have introduced techniques here for studying the
individual tuning functions p(spike(t) |, 1) beyond incorporaon
of just palrWlse correlations; knowledge of these individual func-
tions, in turn, allows us (via Bayes’ rule) to investigate the full
population code p(splke ()|),the probability of observmg any
given activity pattern as a function of the input w. Our results
complement previous findings on pairwise dependencies in MI
(Riehle et al., 1997; Hatsopoulos et al., 1998; Lee and Georgopou-
los, 1998; Maynard et al., 1999; Baker et al., 2001) and more
general dependencies in visual cortex (Arieli et al., 1996; Tsodyks
etal., 1999) and hippocampus (Harris et al., 2003): the activity of
a cortical cell depends on that of its neighbors, and a complete
understanding of the cortical code requires explicit modeling of
these interdependencies (Chornoboy et al., 1988; Yang and
Shamma, 1990; Martignon et al., 2000; Brown et al., 2004).

We examined these dependencies in two distinct contexts: in
the absence and presence of information about the current kine-
matic state of the arm. The neural-only analysis (k = 0) indicated
significant redundancy in MI, with neurons carrying large
amounts of information about the correlated population activity
of their neighbors; these results are consistent with the view that
MI cells share common sources of excitation that encode com-
plex functions of the movement trajectory kinematics. The anal-
ysis in the context of observed kinematic information (k non-
zero) went further, demonstrating that these interneuronal
dependencies remain significant even when accounting for the
“common input” w. Moreover, the preferred timescale of the
interneuronal spike counts #; is much shorter in the presence of
kinematic information than in its absence (Fig. 9d). Finally, the
correlation between the interneuronal weights a; and the overlap
inkis greatly reduced by the inclusion of kinematic information,
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all indicating that these dependencies are not just attributable to
overlaps in kinematic preference. Thus, the activity of a given
neuron must be interpreted in the context of the activity of neigh-
boring cells in the MI network.

Nevertheless, although significant, the differential effect of
these dependencies is small compared with the information in the
trajectory signal (Fig. 9b; similar results are obtained using differ-
ent techniques by Truccolo et al., 2003). Thus, whereas the inter-
neuronal term 71 plays a significant role in our Model 2, the kine-
matic term k tends to dominate. In both aspects, our findings
complement the literature on correlations between pairs of MI
neurons (Smith and Fetz, 1989; Riehle et al., 1997; Hatsopoulos et
al., 1998; Lee and Georgopoulos, 1998; Maynard et al., 1999;
Baker et al., 2001; Oram et al., 2001): although correlations
within the MI neural network are strong, much (although notall)
of this interneuronal dependency can be accounted for by over-
laps in kinematic preferences. Future work will examine the im-
plications for the “decoding” problem inherent in the design of
neural-prosthetic devices (Donoghue, 2002; Mussa-Ivaldi and
Miller, 2003; Nicolelis et al., 2003; Brockwell et al., 2004).

We may contrast our results to those of Harris et al. (2003),
who examined interneuronal dependencies in the hippocampus
using related techniques. Their analysis found these hippocampal
dependencies to be much less locked to external kinematic pa-
rameters than those we observe in MI; moreover, the optimal
timescale for hippocampal dependencies was much smaller (=20
msec) (cf. Fig. 9d), with a better-resolved peak at the optimal bin
width. Together, these results indicate striking differences in the
population codes of MI and hippocampus, which in turn could
reflect differences in their underlying computational architec-
tures (e.g., the relative roles of redundancy reduction and signal
averaging) (for additional discussion, see Harris et al., 2003).
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