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Recent advances in large-scale ensemble recordings allow monitoring of activity patterns of several hundreds of neurons in
freely behaving animals. The emergence of such high-dimensional datasets poses challenges for the identification and analysis
of dynamical network patterns. While several types of multivariate statistical methods have been used for integrating
responses from multiple neurons, their effectiveness in pattern classification and predictive power has not been compared in
a direct and systematic manner. Here we systematically employed a series of projection methods, such as Multiple
Discriminant Analysis (MDA), Principal Components Analysis (PCA) and Artificial Neural Networks (ANN), and compared them
with non-projection multivariate statistical methods such as Multivariate Gaussian Distributions (MGD). Our analyses of
hippocampal data recorded during episodic memory events and cortical data simulated during face perception or arm
movements illustrate how low-dimensional encoding subspaces can reveal the existence of network-level ensemble
representations. We show how the use of regularization methods can prevent these statistical methods from over-fitting of
training data sets when the trial numbers are much smaller than the number of recorded units. Moreover, we investigated the
extent to which the computations implemented by the projection methods reflect the underlying hierarchical properties of the
neural populations. Based on their ability to extract the essential features for pattern classification, we conclude that the
typical performance ranking of these methods on under-sampled neural data of large dimension is MDA.PCA.ANN.MGD.
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INTRODUCTION
The emergent capabilities to simultaneously monitor the activities

of over several hundreds of individual neurons in the brain [1–6]

have vastly expanded the complexity of the resulting neural data

sets. It becomes increasingly clear that traditional approaches that

characterize first-order (e. g. peri-event rasters or peri-event

histograms) or second-order (e. g. pair-wise cross-correlations and

joint peri-event time histograms) statistics of time series of discrete

spike trains (point process) are no longer adequate to deal with the

complexity of the large data sets [7,8].

In this paper we examine methods for categorical classification

of discrete stimuli or episodic events based on the spike series

responses they induce in a population of neurons. In addition, we

focus on high dimensional, low sample sizes (trial repetitions)

neural data, since many cognitive experiments may come with

constraints in terms of allowing large trial repetitions. While

several types of multivariate statistical methods have been used for

integrating responses from multiple neurons, their effectiveness in

pattern classification and predictive power have not been

compared in a direct and systematic manner. In an attempt to

provide empirical comparisons among those mathematical tools,

we examine here the performance of a variety of multivariate

statistical classification methods on standardized, representative

data sets. The multivariate methods we study here include

Multivariate Gaussian Distributions (MGD), which performs the

classification task in the original high dimensional space, and

Multiple Discriminant Analysis (MDA), Principal Components

Analysis (PCA) and Artificial Neural Networks (ANN), which

achieve classification by first projecting the original data sets into

lower-dimensional subspaces [9].

Our empirical measurement of the performance of these

methods are based on their classification scores of three data sets:

1) simultaneous recording of 250 neurons from the hippocampal

CA1 region of mice subjected to episodic startling events such as

acoustic startling sound, experimentally simulated earthquakes or

free fall (elevator drop), and sudden air-blow to the back of the

animal; 2) the simulated data sets of 250 neurons in the inferior

temporal cortex of the monkey during presentation of face images;

3) the simulated data of 250 neurons in the monkey motor cortex

during arm movements and rotation.

The experimental dataset from the mouse hippocampus can

help us assess the performances of these methods in real world

scenarios, whereas the simulated data sets enable us to numerically

vary the neural correlations and noise levels in data modulated by

categorical or continuous variables in order to to explore the

effectiveness of these methods for pattern classification. We have

also examined the potential complications when the trial/sample

number is much smaller than the size of the analyzed neural popu-

lation and how they can be addressed through the regularization

methods. Another critical issue is how to select a classifier which

would allow uniform comparison of the performances of these
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statistical techniques in order to determine which methods achieve

more accurate classification on our data sets. Finally, we investi-

gate the computations implemented by the projection methods by

examining the detailed composition of the lower-dimensional

subspaces.

RESULTS
We use the recorded hippocampal and simulated cortical data sets

to illustrate the implementation of these multivariate statistical

methods. For the hippocampal data, occurrence of a startle event

produces significant changes in the population activity (Figure 1A).

The average frequency changes during the startle events indicate

that while a significant proportion of neural population (48%) does

not respond to any startle stimuli, the remaining units changed

their frequency after the occurrence of either all such types of

events (9%), 3 types only (9%), 2 types only (15%) or only to

a single type of event (20%) (Figure 1B). To facilitate direct com-

parison between different neurons, we used the transformation

Ri = |fi2f0|/(g0+f0), where fi and f0 represent average frequency

responses during startles of type i or rest states, and g0 is the

average population activity during rest states. For the first

simulated data set we assume that the neural responses are drawn

from a neural population with a hierarchical structure, with

neurons responding to presentation of any human face, to famous

faces only, to male or female only, or to individual ones

(Figure 1C). For the second simulated data set, we assume that

the neural population is composed of units that are generally

responsive to all arm movements, to movements at specific angles,

or to movements that are sharply or broadly tuned around specific

angles (figure 1D). While the neurons for the simulated data sets

are modulated by either discrete or continuous variables, their

responses are assumed to be drawn from Gaussian distributions.

Figure 1. Neural population activities obtained from hippocampal recordings and simulated cortical responses to face presentation/arm
movement. A) Neural population responses to a 30 cm drop are indicated by spike rasters of 250 simultaneously recorded CA1 hippocampal neurons
starting from 2 s before and ending 8 seconds after the startle event, indicated by the vertical red line. B) Average frequency changes during the
startle events indicate the existence of non-responsive neurons (48%) as well as neurons that respond to all startle (1–23), 3 types only (24–46), 2
types (47–85) or only to a single type of events (86–135) (the maximum change is normalized to be 1). The caricature images displayed on the top of
the colormap correspond to each startle type: sound, air blow, drop and shake. C) Average responses of simulated neural responses to presentation
of four human faces (famous face #1 Halle Berry, famous face #2 Einstein, non-famous face #3-female, non-famous face # 4–male). Out of a total of
250 neurons, we choose 50 to be responsive to all four faces, 20 to famous faces, 20 to the two female faces and 20 to the next two male faces.
Finally, four populations of 10 neurons are assumed to respond to each individual face, with the rest of the 100 neurons being unresponsive. D)
Simulated motor cortex population responses to arm movements at different angles hM{45u, 90u, 135u, 270u}; the stimulation angles are indicated by
the green, blue, magenta and cyan arrows on top of the colormap. For ease of visualization neurons were sorted along the vertical axis by their
tuning width, with 55 neurons responding to all faces, 40 and 30 units being more and less broadly tuned, respectively, and 25 units being very
sharply tuned around their responsive angle, while the remaining 100 units are unresponsive.
doi:10.1371/journal.pone.0000404.g001
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Implementation of subspace analysis classifiers via

regularization
In practice, for data with large number of dimensions, the class

covariance matrices are often ill-conditioned and non-invertible.

As a result, the computed projection subspaces are potentially very

sensitive to small variations of data. This is commonplace for sets

represented in very high-dimensional spaces and a direct conse-

quence of data under-sampling, as the dimension of the data

points (number of recorded neurons) is much higher than the

sample training data dimension (trial numbers). To illustrate the

need for regularization, we employ a two-dimensional example

which uses two distinct data sets drawn from Gaussian distribu-

tions (Figure 2A). An appropriate, if extreme, example of under-

sampling is to choose two points from each class and to attempt to

classify all remaining data points based on this choice. Obviously,

the covariance matrix that best fits two data points corresponds to

the line that unites them; this matrix has a zero determinant and is

not invertible. The simplest example of such covariance matrix is

a two by two array with all elements equal to 1, corresponding to

perfectly correlated variables of equal standard deviations in both

x and y dimension. Increasing the diagonal elements by a very

small amount makes the covariance matrices usable in computa-

tions, although they are barely invertible. As a result, the gener-

alized distance away from the center of the two-point point

distributions is only slightly influenced by variations along the

uniting lines and it is dominated by deviations along the

orthogonal lines. Consequently, there is an increased chance of

misclassification of test data points due to overemphasis of the best

fit to the two-point sampled data sets (Figure 2A).

This singularity issue can be addressed directly by regularization

of the covariance matrices of form: Si’ = (12l)Si+l I [10–12].

Here l is a regularization parameter between 0 and 1, Si is the

covariance matrix for the ith class, and I is the identity matrix. As

a result of regularization the determinant becomes non-zero and

matrices Si can be now inverted. Previous research [12] used

cross-validation results to search for the optimal regularization

parameter. Here, we suggest an automatic way of selecting these

parameters in the next paragraph, as this allows us to use the cross-

validation results as an unbiased indicator of algorithm perfor-

mances. Another solution used in the neural signal classification

literature is to assume that all neural signals are uncorrelated, that

is, to set the non-diagonal elements of the matrix S to zero, thus

ensuring that its determinant is non zero [13,14]. These methods

may also require further regularization if the sampled neural

population contains units with extremely low firing rates, which

have mean and standard deviations close to zero; in this case the

covariance matrix becomes also non-invertible. Another way of

addressing this problem is through preprocessing, by eliminating

such low-firing neurons or other units that have weak changes in

firing rates between different stimuli paradigms [5].

The main consequence of the regularization methods men-

tioned in the previous paragraph is to increase the relative size of

diagonal elements as compared to off-diagonal elements. We

Figure 2. Regularization can prevent over-fitting of the training data sets. A) A two-dimensional example illustrate how a two-class classification
between the two data sets (blue and green points drawn from two-dimensional gaussian distributions) is affected by selecting a small number of
samples (two in this example). The probability distributions that best fit the selected points are too tight and introduces classification errors (red stars,
for the green class). B) The probability distributions corresponding to the regularized covariance matrices yield better generalization and allow all
data points to be classified classified correctly. The new 2s boundaries are plotted in black for each class. Minimization of quantity
F = log(E1)+log(E2)+log(E3), the log of error terms for self, opposite class and between-class separations, permits the selection of regularization
parameters at the minimum for C) blue class at l = 0.76 and for D) green class at l = 0.52.
doi:10.1371/journal.pone.0000404.g002
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introduce the following choice for regularization: S’ = (12l)S+
l M I, where M is the average of diagonal elements of the

original covariance matrix S. The new ensuing probability

distributions, obtained when using the ‘optimal’ regularization

parameters, are shown in Figure 2B. These choices are made

using the following procedure: for each regularized matrix

the error terms for the points belonging to the self-class are

first computed E1~
X

i[DS
(xi{mS)tS{1

S (xi{mS), followed by

the error terms for the points that belong to different classes

E2~
X

j=S

X
i[Dj

(xi{mj)
tS{1

S (xi{mj) and for the between

class centers E3~
X

j=S
Nj(mj{mS)tS{1

s (mj{mS). The

regularization parameter l is chosen in the region where the

quantity F = log(E1)+log(E2)+log(E3) is minimized (see

Figure 2C and 2D for an example). The rationale for this choice

is to use information from different classes than own to choose

regularizations parameters that are more likely to yield improved

generalization. Obviously, the term E1 is minimized for l = 0 and

monotonically increases with l, as the covariance matrix S
changes away from the best fit of the training data set. The terms

E2 and E3 would likely decrease though as the covariance matrix

S relaxes the correlation terms that renders it too rigid a fit for the

self class into a more general uncorrelated matrix. This new matrix

likely describes better both the data points that do not belong to

the first class and the axis that unites the two classes; in practice

these trends create a minimum for the quantity F.

Class membership evaluation within the projecting

subspaces
Another essential technical issue pertaining to the application of

these subspace projection methods is to determine how accurate

the class membership evaluation is. A simple, non-parametric and

efficient method to compute the class membership is to assign each

data point to the closest cluster. This method, however, has the

disadvantage of leaving the class probabilities undefined and of

giving equal performance marks to points that are at different

distances away from their corresponding assigned clusters. An

example of these shortcomings is shown in Figure 3A, where class

assignment is attempted based on the regularized covariance

matrices of under-sampled data points from three two-dimensional

classes. Distribution of the all data points errors (or generalized

distances) for each particular class indicate that they are

characterized by the small magnitudes and standard deviations

for the self-class samples, and that the reverse is true for data

points belonging to different classes (Figure 3B). This permits the

use of the following probability evaluation functions for each class

Figure 3. Class membership evaluation for a three-category example. A) Two-dimensional example illustrates the assignment to the closest cluster
for a three-class membership (blue, green and red). We used the regularized covariance matrices to generate the 2s boundaries for the under-
sampled data points. B) The errors, or generalized distances away from the center of the blue cluster are plotted for all data points. Note that the blue
points are characterized by low distances with a small standard deviation, in contrast to the green or blue points. The other error plots are similar in
nature. C) Evaluation functions for determining the first class assignment. Data points with small and large errors are deemed to belong to the blue or
other classes, respectively. D) Color plots indicating the distribution of probabilities throughout a region containing all data points. Each shade in the
color gradation indicates an increase/decrease in probability above the chance levels (grey shade represents equal low probability for all three
classes). The colors of the original data points and the original 2s boundaries have been changed to increase their visibility.
doi:10.1371/journal.pone.0000404.g003
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hi(x)~(1{ tanh (bi(x{mi)
tS{1

i (x{mi){bidi=2))=2, where di

is proportional to the separation of self-errors and different-class

errors and bi = 4/di. The choice for these probability functions is

made such that the points belonging to the self class and all other

classes receive probabilities close to 1 and 0, respectively, with

a smooth transition as a function of generalized distance, as shown

in Figure 3C. After computing all class probabilities for a particular

point x, we normalize the sum of all probabilities. If the sum of

probabilities is more than 1 (
XN

j~1
hj(x)w1) we use multiplica-

tive normalization h0i(x)~hi(x)=
XN

j~1
hj(x), otherwise we em-

ploy additive normalization h0i(x)~hi(x)z(1{
XN

j~1
hj(x))=N

This particular choice of using both multiplicative and additive

normalization has allowed us to compare algorithm performances

uniformly. In particular, it is easy to envision particular data sets that

have insufficient information to decide on the class membership;

here all the data points have equal chance to belong to any class. In

this situation, MGD, MDA, and possibly ANN, tend to use the noise

from the large number of dimensions to produce tight fits for the

training data points; consequently the test points are situated far

away from the training cluster and receive low probability scores that

do not add up to 1. Here the multiplicative normalization would

select a class winner for MGD/MDA/ANN methods biasing them

towards closest cluster selection, even when test point may be located

quite far from all of clusters; in this situation additive normalization

would be more appropriate as it assigns equal probability to all

classes. In contrast, for the same data sets, the PCA method tends to

produce larger size clusters, at times even overlapping, which yield

similar probability scores for all test data points; here it is likely that

total sum of probabilities is more than one, therefore of multiplicative

normalization would yield class assignment similar to the other

multivariate methods (MGD, MDA, ANN).

The use of the probability evaluation functions in conjunction

with the normalization rules allow us to compute probabilities at

any location in the low or high dimensional spaces (see Figure 3D

for a two-dimensional example). Consequently, the evaluation of

performances can be done by computing the probability that a test

data point belongs to a class or another, as opposed to assigning it

to the closest cluster. We note here that when class assignment is

not the main goal of employing a particular multivariate statistical

method, for example when used to monitor the dynamics in the

low-dimensional projection subspace, different choices of normal-

ization or even no normalization may be more appropriate.

Evaluation of performance using both the

experimental and simulated data
In order to facilitate a better understanding of the implementation

of MDA, PCA, ANN, and MGD statistical methods and to

evaluate their relative effectiveness in pattern classification, we use

the experimental data sets from mouse hippocampus and the two

simulated data sets from monkey cortex; all data sets contain 250

neurons and small number of repetitions of sampled stimuli. We

first set out to compare the performance results on these three data

sets by assessing the impact the neural variability has on the

performances of the statistical multivariate methods.

For the electrophysiological data set, we have emulated an

increase in the population noise level by identifying the units that

are best classifiers and then systematically eliminating them from

the neural population, thereby monotonically decreasing the over-

all signal to noise ratio. To estimate how good a classifier indivi-

dual neurons are, we use the one-dimensional MGD probability

distributions to compute the probability hij that startle event i
belongs to category j. Then an overall fitness score is computed:

S~
XM

i~1
hiC(i), where M is the number of instances in the

training data set, and C(i) is the class membership of instance i,
allowing us to obtain a sorted sequence of best discriminating

neurons. To obtain a more accurate estimate of the overall

performance of the statistical methods we created a collection of 8

test data points (4 data points for each stimuli as well as their

corresponding 4 rest samples) to cross-validate the predictive

power of models constructed using 48 training data points (24 rest

samples and 6 data points for each one of the four classes). The

mean performance is then obtained by averaging the results

obtained for 100 different random training/test partitions.

MDA performances for the test points from the electrophysi-

ological data set indicate that eliminating the best neurons one by

one to simulate an increase in the noise levels results in

degradation of test data classification accuracy for all methods

and that the sorted sequence of best performers is MDA.P-

CA.ANN.MGD (Figure 4A). When using the full number of

neurons available, the performances of the methods were

MDA = 0.96, PCA = 0.85, ANN = 0.74, MGD = 0.56. While

performances for PCA, ANN and MGD decreased in relatively

linear fashion, the MDA accuracy started decreasing in a signif-

icant fashion after approximately 50% of the best classifiers

neurons are eliminated. This trend suggest the existence of

a certain degree of redundancy in the information contained in the

neural population, which allows MDA to maintain relatively stable

performances in spite of the decrease in the signal to noise ration.

The increased drop in performances as the size of sampled

population is reduced towards small numbers also suggests the

existence of a significant group of non-responsive neurons which

does not contain information about the episodic events. We also

note that the performances of all statistical methods degrade

towards guess levels (20%) as the population is reduced to small

numbers of unresponsive neurons.

We have further assessed the impact of the noise on the

performances of the statistical multivariate methods by increasing

the amount of neural noise on the simulated data sets, starting

from small amount of variability which allows maximal perfor-

mances for all statistical techniques and then increasing the noise

levels gradually until all classification methods fail to perform

better than random guess. For simplicity we also assume first that

variability among neurons during exposure to a class of stimuli is

uncorrelated. The data partitioning choice in the simulated data

sets is made to emulate the choices made in the experimental data

set. For each distinct level of the signal to noise ratio, the average

performances for class prediction were obtained by computing the

generalization performances of all statistical methods on 100

different training and test data sets.

For the simulated data set number one (face perception), we

have found that all methods performed fairly well at the beginning

(low noise levels), producing the performance sequence: MDA<P-

CA.MGD.ANN (Figure 4B). As the noise levels increase, the

performances of MGD are most affected and drop faster to

minimal random guess levels; also the PCA methods are also more

affected than MDA. At high levels of all performances are

indistinguishable from the random guess levels. Thus, the analyses

on this simulated data set have also led to the qualitatively similar

performance-ranking sequence for the performance sequence:

MDA.PCA.ANN.MGD. These trends are similar for simu-

lated training data set number two (motor cortex data, Figure 4C).

We note that while in the experimental data set from the mouse

hippocampus the performances for MDA method remain at

relatively high levels until a significant fraction of cells is

eliminated, the decrease in performances is more linear here as

the level of noise increases. Also, when correlations between
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neurons are introduced for each stimuli class, the advantage the

MDA has over the PCA method is increased (data now shown).

Finally, we mention here that when dealing with data sets with

large dimension, ANN, MGD, and MDA are perfectly capable of

learning to classify the training data sets faithfully, regardless of the

levels of noise; therefore the performances for the training data set

are almost always close to 1. In contrast, the PCA performances

are much more consistent between training and test data sets.

For a fixed level of noise, the performances of each method

increase as the number of repetitions is augmented (Figure 4D,

temporal cortex simulated data), as this allows obtaining better

estimates for the center of multi-dimensional clusters and their covari-

ance matrices. Addition of a few extra samples has the most pro-

nounced effect when the size of original training data is small. In the

asymptotical state, when the number of repetitions becomes large as

compared to the number of variables, the performances of each

method reflects how much they are affected by the variability in the

neural data, producing the following ranking MDA.PCA.MG-

D<ANN.

Computation implemented by the projection

methods
What are the main differences between these methods in terms of

the computations that they are implementing? The ANN method

constitutes a complex model, capable of computing a non-linear

mapping between input and output, but the number of its under-

lying parameters is quite large, making it difficult to intuitively

understand the computation they are implementing. MGD is not

a projection method and all the information pertinent to classifi-

cation is stored in large dimensional mean vectors and covariance

matrices corresponding to each class. MGD computes the general-

ized distance from the center of the N-dimensional clusters corre-

sponding to each class for all test point. Because each neuron

contributes to this distance similarly, the noisy units can have

a detrimental effect on the overall classification. As shown in the

previous section, classification is facilitated by projecting into

lower-dimension projection subspaces where the computations

implemented by these subspace analysis methods essentially

reduces to calculations of the weighting factors specifying the

contribution of each original variables to the new dimensions. For

the experimental data set and the two simulated data sets, the

MDA and PCA computations are similar in nature, however, the

cluster produced are usually tighter for MDA.

We previously showed [5] that a subpopulation of the recorded

CA1 neurons responds to all types of startles, while other percent-

ages of cells respond to either one type or to a combination of

startle stimuli. The encoding MDA subspace seems to reflect the

makeup of different types of cells, with the first dimension

separating the startle classes from the base/rest state and the

Figure 4. Performance evaluation for the multivariate statistical methods. A) The percentage of neurons eliminated (from best to worst single
classifiers) is displayed on the horizontal axis, and the performances of methods are displayed on the vertical axis. The order of best performers is
MDA.PCA.ANN.MGD. B) The accuracy of classification for face perception data set is plotted against the magnitude of the noise term. The relative
ordering in test performances (MDA.PCA.ANN.MGD) is generally maintained among the different statistical methods with the exception of MGD
which outperforms ANN at low noise levels. C) Results on the arm movement simulated data sets display similar trends to the face perception data
set. D) Performances of all methods increase towards their asymptotical values as the number of sampled face perception training data points
become larger. This increase of the training data set benefits most the lower performers, MGD and ANN, although their maximum performances do
not reach the larger levels of PCA and MDA.
doi:10.1371/journal.pone.0000404.g004
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second dimension separating the shake from the acoustic startle

(Figure 5A), while the third and fourth dimensions separate the

drop event from the rest of the startling events and the air-blow

event from the acoustic startle, respectively (Figure 5B). It is

evident that the first two projections already separate the different

classes into non-overlapping clusters and the last two dimensions

further increase the global distance between these clusters. While

the different classes separate analogously along different PCA

projecting dimensions (Figure 5C and 5D), the clusters produced

by MDA are smaller in size than the ones produced by PCA

method. We note here that the performances for the PCA method

can be improved by eliminating the neurons exhibiting weak

startle responses over the base firing rates [5], as this improves the

separation between base/rest class and the other classes.

We also analyzed the simulated face perception in temporal

cortex data sets to gain additional insight in what determines the

makeup of the discriminate dimensions. Not surprisingly, the first

MDA dimension separates all face perceptions from baseline

activity, while the second dimension separates female faces 1&3

from male faces 2&4, with projection of the rest states lying in

between (Figure 6A). The third dimension separate the perception

of famous faces from perception of non-famous faces, while the last

dimension uses information about each face perception to further

increase their separation in the projecting subspace (Figure 6B).

The PCA method exhibits similar trends.

Further inspection of the weight distributions for these dimensions

reveals that they correlate with the magnitude of neural responses

that satisfy the above-mentioned characteristics. The non-responsive

neurons have no contribution to the first MDA dimension as their

weighting factors have an average around zero (Figure 6C). The

group of neurons that responds to all faces receives the largest

weighting factors, followed by the less general neurons, responding to

face category 1&2 (famous), 1&3 (female) or 2&4 (male), followed by

the group of neurons that are specific to an individual face. For the

second dimension, which separates the male and female faces, the

non-responsive neurons as well as the most general neurons and

‘‘face famous neurons’’ have insignificant contributions. The

neurons responsive to face perceptions 1, 3 and 1&3 have on

average positive weighting factors, and the neurons responsive to

perceptions 2, 4, and 2&4 have on average negative weighting

factors. Moreover, the magnitude of the weighting factors for the

neurons responding to highly specific individual faces is less than the

neurons responding to two perceptions. On the third dimension the

‘famous face’ neurons become the larger contributors, followed by

the individual famous-face neurons (1&2, positive contributions) and

non-famous-face neurons (3&4, negative contributions). Finally, only

Figure 5. MDA and PCA projection subspaces for electrophysiological data set. A) First MDA dimension separates all startles from the rest data
points (black dots), while the second dimension separates shake (diamonds) events from the metal sound events (circles). Training and test data
points are represented in black and red color. Two dimensional gaussian distribution are fitted to the projected points for each class, revealing that
they form segregated clusters (ellipsoids extend up to the 2s boundaries). The colors black, green, blue, magenta and cyan denote rest, metal sound,
air, drop and shake events, respectively. B) The third MDA dimension separates shake and airblow (triangles) classes from drop class (stars), and the
fourth dimension separates metal sound and shake classes from drop and air blow classes. C) Inspection of the PCA discriminant dimensions indicate
a similar structure of the encoding subspace with the first dimension separating the base from the rest of the startles and the second dimension
separating the metal sound from shake. D) The third PCA dimension separates air blow from drop and the last dimension PCA separates shake from
drop.
doi:10.1371/journal.pone.0000404.g005
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the most specific neurons, responding only to single faces, further

contribute for the dimension 4, increasing the separation between

projected clusters. The individual weighting factors produced by the

MDA subspace reinforce this view (Figure 6D).

Similarly, classification of neural activity in the motor cortex

during resting states and arm movements at four different angles

can be solved in a four-dimensional discriminating subspace,

where all classes of population responses are projected to segre-

gated regions. In this subspace, the first dimension yields maxi-

mum separation between no-movement class and the other classes

(Figure 7A), while the second dimension complements the first

dimension by providing separation between classes corresponding

to hM{45u, 90u, 135u} and h= 270u (forward and backward

movements). The third dimensions of the projection subspace

separates left and right directions, for hM{45u, 135u} (Figure 7B),

while the fourth attempt to separate h= 90u from hM{45u, 135u}.

Out of the 4 projections generated by MDA, the first two

dimensions account for most of the variations in the data set.

Interestingly, inspection of the linear weights for the first

dimension reveals that the units that are generally responsive to

movements have a larger impact on deciding on the existence of

movement than the other angle-tuned units (Figure 7C). In

addition, the second dimension implements a computation of the

vertical axis components which rely more on the broadly-tuned

units and less on the sharply-tuned ones (Figure 7D). This

sequence is reversed on the third dimension, which implements an

oblique left versus oblique right decision, and the more sharply-

tuned neurons have more impact than their broadly-tuned

counterparts (Figure 7E). Finally, separation between forward

and oblique movements is attempted in the fourth dimension

(Figure 7F), mostly by relying on the very sharply tuned angle-

specific neurons, but the generalization power of this computation

suffers if the number of such sampled units is small. The structure

of weighting factors for the discriminant dimensions suggests that

although the arm movements have been sampled at only four

discrete angles, the computation implemented by the projection

methods takes advantage of the continuous modulation of neurons

by pooling units with similar tuning properties to achieve

discrimination between different types of movements.

DISCUSSION
The emergence of high-dimensional datasets poses challenges for

the analysis and identifications of dynamical network patterns,

because many traditional statistical tools may lose their efficiency

dramatically as the numbers of dimensions increases. While

several types of multivariate statistical methods have been used for

integrating responses from multiple neurons, their effectiveness in

Figure 6. MDA projection subspace for the face perception cortical simulated data set. A) First MDA dimension separates the projection of neural
responses to all perceptions from the projections of base firing rates (black). Second MDA dimension separates perception of female faces 1 (green,
circles) and 3 (magenta, stars) from the male faces 2 (blue, triangles) and 4 (cyan, diamonds). B) Third MDA dimension separates famous faces 1 and 2
from faces 3 and 4. Fourth MDA dimension further increase the separation between classes 1 and 2 and between 3 and 4. C) Average weighting
factors for MDA, with dimension number represented on the horizontal axis and with type of neurons represented on the vertical axis, starting from
neurons responsive to all faces (line 1), to famous faces (line 2), to female faces 1 and 3 (line 3), male faces 2 and 4 (line 4), 1 only (line 5), 2 only (line
6), 3 only (line 7) and 4 only (line 8), and to non-response neurons (line 9) indicate that discriminating dimensions reflect the hierarchical structure
used to generate the data. D) Individual weighting factors are also reflective of the different discriminating procedures implemented by these
dimensions (general 1–50, famous 51–70, male 71–90, female 91–110, first face 111–121, second face 121–130, third face 131–140, fourth face 141–
150, non-responsive neurons 151–250).
doi:10.1371/journal.pone.0000404.g006
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pattern classification and predictive power has not been compared

in a direct and systematic manner.

To address this issue, we have uniformly compared the per-

formances of different multivariate statistical methods on recorded

and simulated data sets, and assessed to what extent reducing the

complexity of the initial encoding space improves the classification

task. We have further investigated their robustness by evaluating

their performances as the amount of noise in the data is increased

and we conclude that for our experimental and simulated under-

sampled high-dimensional neural data the order of best performers

Figure 7. MDA projection subspace for the cortical arm movement simulated data set. A) First dimension yields separation between the black
cluster (corresponding to the no-movement states) and the responses to arm movement at different angles (green for the 45u, blue for the 90u,
magenta for the 135u and cyan for the 270u classes). Second dimension separates the forward movement clusters (45u, 90u and 135u) from backward
movement cluster (270u). B) Third dimension separates the left and right directions (green 45u from magenta 135u), while separation between
forward (blue 90u) and lateral-forward (green 45u from magenta 135u) is attempted in the last dimension. The generalization performances for these
dimensions correlate with the magnitude of the corresponding eigenvalues sequence generated by MDA: 0.74, 0.16, 0.06 and 0.03 (sum of all
eigenvalues is normalized to 1). C) Smoothed weight distributions on the first dimension indicate that neurons responsive to all movements have the
largest contribution to this dimension (thick blue line) followed by broadly tuned neurons (thick cyan line) and sharply tuned neuron (green line).
Neurons sharply tuned to a specific angle (thin red line) and non-responsive (thin black line) units have very small contributions. Stimulating angles
(green 45u, blue 90u, magenta 135u and cyan 270u) are listed as colored stars symbols on the top of the plot. D) In the second dimension the broadly
tuned neurons have the largest contributions, followed by sharply tuned and angle-specific neurons, with the rest of the units having negligible
contributions. E) Third dimension, which separates left from right, relies more on the sharply tuned units and less on the broadly tuned units, with
minimal contributions from the rest of the neurons. F) Inspection of the fourth dimension curves indicate that the very sharply tuned neurons are
used in the attempt to separate forward from oblique movement.
doi:10.1371/journal.pone.0000404.g007
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is MDA.PCA.ANN.MGD. While we believe that the ranking

should have general implication because the analyses of three large

datasets are quite representative of three major areas of

neuroscience research (namely, learning and memory in the

medial temporal lobe, motor controls and planning in the

premotor and motor cortex, and visual information processing

in the visual cortex), we acknowledge that at this stage we can not

completely rule out the possibility that the ranking sequence might

not be the exactly same for all future large datasets. We also note

here that while PCA methods have similar performances between

performances on training and test data, MDA and MGD require

regularization to prevent over-fitting of training data sets.

Prevention of over-fitting can be done by stopping the training

of ANN early, but it is not clear how this can be done optimally. In

addition, the implemented mapping between the input and output

layer may not reflect the intrinsic structure of the data; these

features may prevent the ANN methods from achieving better

performances. More insight into the ranking of these methods

could be obtained by studying the theoretical bounds for their

performances, for example by computing their performances using

the correct centers of the clusters and covariance matrices used to

generate the training data.

In addition, we have looked into the computations that are

implemented by the projection methods, primarily focusing on

MDA and PCA. We note here that these methods are ideal to

address categorical classification of data set. If the sampled data is

continuous in nature (e. g. Local field potential, Electroenceph-

alography, Functional magnetic resonance imaging) other meth-

ods, such as Independent Component Analysis (ICA), may be

better suited for separating the continuous signals into indepen-

dent components [15,16].

MDA is a supervised dimensionality-reduction method that

attempts to obtain maximum separation between neural popula-

tion responses corresponding to different types of known stimuli by

identifying and integrating the classification-significant neural

features [5]. The PCA technique is another widely used projection

method that has been used to explore regularities in the data set

[5,17–19]. Although the PCA projection method does not take

into account the class membership, and is therefore constitutes an

unsupervised method, the low-dimensional encoding subspace

generated by the first few eigenvectors is typically also effective at

separating the different classes. Due to its unsupervised nature, the

PCA method tends to be less affected by overfitting than the MDA

method, yielding similar performances for the training and test

data sets. These two eigenvalue/eigenvector techniques are very

useful for extracting the essential features down to an encoding

subspace of lower dimensionality [5,18,20], allowing for easier

visualization and monitoring of the recorded dynamics. Being

linear in nature, they may be the first methods employed in

attempting to find low-dimensional classifying subspaces embed-

ded in the higher-dimensional data spaces. In addition, our

analyses indicate that the computations implemented by these

methods reflect the underlying hierarchical and categorical

structure within the neural populations (Figure 8).

The selection of the input data can have a profound impact on

the performances of the statistical methods. For example, while the

duration of hippocampal neural responses to startling episodes

ranges from a few hundred milliseconds to tens of seconds, the

majority of such responses are within one second. As such,

a selection of a too-narrow time-window as small as 10 ms would

not capture critical details of these responses, as it would cut off

a large part of the relevant spike responses. On the other hand,

selection of a time window as large as 10 seconds would be too

large, as the majority of the neurons would have returned to the

base firing rates after a few seconds. Previous research in primary

sensory and motor regions suggests that multivariate methods

perform better when the bin sizes used to create the input data sets

have a width above 100 ms [21]. For our data sets we choose to

partition a one-second time interval in two bins, to include

information about the initial activation and the subsequent

sustained activity, while choosing time bins large enough to be

robust to time variation that may be caused by delays in responses

after the startle stimuli. A more detailed partition, of three or more

bins in the 1 second interval could improve the classification

performances, however, as the dimension of the original subspace

grows, the computation becomes increasingly under-determined.

For our actual experimental data, we found that using a time

window of at least 750 ms and time bins with widths between 250

Figure 8. Hierarchical and categorical structure in the populations of neurons encoding: A) Episodic events, B) Face perception, and C) Arm
movement. The neurons at the bottom of the hierarchical pyramid represent a common encoding block with broad tuning properties, responding to
the most general and abstract features. The next layers of encoding neurons respond to sub-general, yet still multi-feature, properties of the episodic/
perception/movement events. The neurons at the top encode the most specific features, allowing for the highly specific discrimination of a particular
event, face, or movement direction.
doi:10.1371/journal.pone.0000404.g008
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and 500 ms yields similar optimal performances for the test data

sets prediction.

Under-sampling of relevant stimuli due to experimental

constraints, such as small number of stimuli repetition to avoid

behavioral habituation, poses another major problem for the

multivariate statistical methods, because the covariance matrices

describing the each class distribution become singular. As shown

in the applied statistics studies, regularization can address this

problem directly [10–12], although it is noteworthy to point out

that there is little research about how to find out the optimal

parameters for regularization. Too little regularization is only

marginally helpful by making the covariance matrices barely

invertible and still too rigid a fit for the original distributions, while

too much regularization can erase the correlation coefficients from

the original distribution, losing potentially useful information. One

automatic regularization procedure found in literature to this

problem is to the search for solution of equation of form S x = b
(which involves a formal inversion of matrix S), which can be

achieved by slightly incrementing all diagonal elements in S by

a constant factor (Tikhonov regularization, [22]). The optimiza-

tion problem can now be defined as finding the vector x that

minimizes the quantity ||S x2b||2+l2 ||x||2, where b is

a column vector, ||x|| indicates the norm of x, and l is

a positively defined regularization parameter. An appropriate

choice for the l values should be a good compromise between too

little (l = 0, overfitting) or too much filtering (l large), and earlier

research [23,24] suggest that appropriate values lie at the corner of

the so-called L-curve plot that displays the log(||S x2b||) vs.

log(||x||). While this method provides automatic selection for

the regularization parameters, it is not clear what would be an

appropriate choice for the column vector b and to what extent the

optimization obtained for this inverse problem yields optimal

results for the classification problem.

We describe a new way of performing the regularization step

that allows us to select a parameter in such a way that it improves

the generalization, by looking for minimization of class errors not

only for the self-class, but also for other classes and in-between

classes. This method performs fairly well for both the experimental

and simulated data sets, yielding increased generalization per-

formances for MDA and MGD methods described here.

Furthermore, these results are robust to choices of the regulariza-

tion parameters, as the functions that determine them change

smoothly around their minimum region where these parameters

are selected.

The existence of embedded signal and noise subspaces also

plays an important role in determining the successful application

of the multivariate statistical methods. In general, the use of pro-

jection methods is closely related to the problem of classification,

where the projection subspace dimensions are used instead of the

initial variables to discriminate between two or more naturally

occurring groups or events. In the context of the neural population

recordings, the differentiation between these groups or events is

usually based on quantitative information on the neural responses

to external stimuli as well as the internal state of the brain.

Consequently, it is often the case that the ensemble response space

is composed of embedded signal and noise subspaces. The exist-

ence of a lower-dimension signal subspace is supported by the fact

that many of the recorded neurons are encoding a small number of

features about the external inputs, acting as linear or non-linear

filters. In addition, in order to simplify alternative interpretations

of the results, the experimental designs are normally trying to

change a few environmental parameters at a time. The methods

discussed in this paper focus on discrete methods, however, even

responses that are modulated by continuous variables can still

embedded in a lower dimensional subspace [25,26]. The noise

subspace accounts for variability in neural responses in response to

stimuli or it may reflect changes in the internal states that are

unrelated to changes in experimental conditions. In the signal

subspaces created by the MDA or PCA methods the first

dimensions usually contain more classifying information than the

remaining ones, depending on the decreasing sequence of

eigenvalues, providing a natural way of separating the signal

components from the noise ones. In contrast, for the MGD

method all dimensions contribute equally to classification and thus

this method does not provide such separation of signal and noise

subspaces.

The problem of over-fitting can potentially be a real concern for

the supervised techniques (MGD, MDA, ANN) and evaluations of

their performances are more accurate when using cross-validation

procedures. As a consequence, non-supervised methods such as

PCA are more appropriate for an unbiased search of regularities in

the data set, have greater power of generalization and potentially

can reveal underlying patterns in the neural data. However, when

the classes to be separated are intrinsically different in nature,

supervised methods, such as MDA, outperform the unsupervised

ones, by automatically searching for the features that best differ-

entiate different classes. Based on our analyses, it seems to be

preferable to use MDA over PCA for experiments where distinct

types of stimuli are delivered in a controlled fashion; on the other

hand, PCA has better potential when used as an exploratory tool

for searching the underlying similarities in the neural signals as its

performances are more consistent between training and test data

than the ones generated by the MDA methods. Thus, we

recommend the use of both supervised and unsupervised methods

to confirm the pattern classifications [5].

The dimensionality-reduction methods can also facilitate

visualization of the ensemble neural activity patterns by projecting

the data in a low-dimension encoding subspace. In addition, these

dimensionality-reduction methods can be employed to investigate

the dynamics of the neural patterns outside the window of time

used to define the training/test patterns. By making use of the

linear weighting factors corresponding to the projection dimen-

sions, one can project the instantaneous neural frequencies within

a moving sliding window (e.g. 1 second width) to the low-encoding

projection subspace, enabling the direct visualization of the

temporal evolution of dynamic activity patterns throughout the

whole experiment. The application of sliding window technique to

MDA has led to the direct visualization of encoding and

reactivations of ensemble traces during formation of episodic

memory [5,20], (see also [27,28]).

In conclusion, we have systematically compared the perfor-

mance of several multivariate statistical methods on large neural

data sets and we have found the following ranking MDA.P-

CA.ANN.MGD. Our empirical analyses of both experimental

and simulated data suggest that, after addressing the under-

sampling problem, the linear eigenvalue/eigenvector methods

(MDA and PCA) are particularly effective for extracting essential

features from complex data sets of large numbers of simultaneous-

ly recorded neurons and for visualization of underlying activity

patterns and dynamics at the neural network level.

MATERIALS AND METHODS
Based on several multivariate statistical tools reported in the

literature for visualization and classification of high dimensional

data [5,9,17–19,29], we use the most well-known methods such as

MGD, MDA, PCA, and ANN. These multivariate statistical

methods are described below.
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Multivariate Gaussian Distributions (MGD)
The class membership can be estimated directly in the

original high-dimensional space of neural firing rates by

computing the Multivariate Gaussian Distributions (MGD)

gi(x)~(x{mi)
tS{1

i (x{mi),i[f1,2,:::,Ng, also known as Normal

Density Discriminant Functions [9]. Here N is the number of

dimensions (neurons), x is the population response treated as an

N-dimensional point x = (x1, x2, …, xN), mi is the mean response

to stimuli for class i, xt is the transpose of vector x, and

Si~
X

j[Di
(xj{mi)

t(xj{mi) is the covariance matrix of the ith

class, which contains the set Di of stimuli repetitions. Each MGD

function calculates the generalized distance from the center of

a cluster, which in turn can be used to compute an approximate

class membership evaluation by assigning each data point to their

closest cluster or by using a classifier which computes the pro-

babilities for each class. The performance of this method is then

evaluated on test data points that are not included in the training

data set.

Multiple Discriminant Analysis
Multiple Discriminant Analysis (MDA) is a supervised statistical

method that can be used to separate neural responses correspond-

ing to different stimuli paradigms into distinct classes [5,30,31],

(also known as Canonical Discriminant Analysis [32], or

Quadratic Discriminant Analysis [10–12]). The mean responses

during rest and activated states are computed for the training

data and used to calculate the between-class scatter matrix

SB~
XC

i~1
ni(mi{m)t(mi{m). Here C is the number of classes,

ni is the number of elements in each class, mi is the mean

frequencies vector for each class and m is the global mean

frequencies vector. The discriminant projection vectors are

obtained as the first resulting eigenvectors in an eigenvalue

decomposition of the matrix productS{1
W
:SB, where the

within-class scatter matrix SW is defined as:

Sw~
XC

i~1

X
x[Di

(x{mi)
t(x{mi), with Di representing the

set of population responses corresponding to the ith class type. For

theoretical reasons, this eigenvalue decomposition produces at

most C-1 non-zero eigenvalues, thus providing an upper bound

for the dimensionality of the resulting projection subspace. In

general, the first dimension exhibits the most separation between

classes, but the subsequent dimensions may further increase the

global separation, thus improving the overall discrimination,

although by a lesser and lesser extent. Assessing class memberships

in the low-dimensional space can be done by computing the MGD

functions in the projected low-dimensional subspace and using

them to evaluate the membership probabilities of each test point.

Principal components analysis (PCA)
The PCA technique is an unsupervised method that attempts to

capture most of the variance observed in the original data set by

computing the eigenvectors of the total scatter matrix:

S
0

w~
XT

i~1
(xi{m)t(xi{m), with T~

XC

i~1
ni being the

number of all the trials across the entire experiment [17–19].

We note here that the PCA scatter matrix is different from the one

created by MDA, since in this case the training data is not

partitioned into different classes. Evaluation of the performances

is done in a similar fashion to the MDA method, by evaluating

the class membership using the MGD functions in the low-

dimensional subspace. In the data sets analyzed in this paper, the

magnitude of the eigenvalues corresponding to the set of

eigenvectors decreases dramatically after the first few dimensions

and the number of relevant dimensions for both MDA and PCA

subspaces is comparable most of the time. Therefore, in order to

be able to compare their performances uniformly, we evaluated

the performances in a PCA encoding subspace of dimension equal

to the MDA subspace.

Artificial Neural Networks (ANN)
The Artificial Neural Networks (ANN) employed in this paper are

feed-forward Multi-Layer Perceptrons with back-propagation

training (MLP, [9,33]). They are capable of performing complex

non-linear mapping between the training data and their class

membership, and they have been successfully used to analyze

neural datasets [34–36]. The type of ANN used here has one input

layer, two hidden layers and an output layer, with transformation

function between layers of smaller and smaller size being logsig,

logsig and linear, respectively (logsig(x) = 1/(1+exp(2x))). This

type of computation can be interpreted as successive transforma-

tions of the multidimensional input X into outputs of reduced

dimensionality. The neural network is trained to compute the class

membership by adjusting the values of the linear connection

weights between its layers. This supervised learning method back-

propagates the error term E~1=C
XC

i~1
jf (Xi){yij2from the

output layer towards the input layer in order to perform a gradient

descent search for the optimal set of parameters that map the input

to the corresponding class membership. Here |X| is the norm of

input vector X, f(X) is the computation implemented by the ANN

and C is the dimensionality of the output layer. The gradient

search is not guaranteed to reach global minimum and it can also

lead to over-training, therefore requiring evaluating performances

on the test data set.

For the electrophysiological data set we used a feed-forward

neural network model from the Matlab Neural Network toolbox

with 500 nodes as input, 200 nodes in the first hidden layer, 50 in

the second one and 5 output units. The number of units in the

input and hidden layers is smaller by a factor of approximately two

(250 for the input layer and 100 and 25 for the hidden layers) for

the simulated data sets.

Experimental data set
We obtained experimental data by simultaneous recording of as

many as 250 CA1 neurons in response to four types of startling

memory events encountered by mice, described in Lin et al.

[5,20]: A short and loud acoustic startle (intensity 85 Db, duration

200 ms), 2) A sudden air-blow to the animal’s back (termed Air-

Blow, 200 ms, 10 p.s.i); 3) A sudden drop of the animal inside

a small elevator (termed Elevator-Drop, vertical freefall height

from 40 cm); and 4) A sudden shake-like cage oscillation (termed

Shake, 200 ms; 300 rpm). The startle stimuli were triggered with

the use of a computer at randomized intervals on the order of a few

minutes. The stimuli were repeated 7 times per session to obtain

a better sampling of the neural responses. Each session typically

lasted around 30 minutes and the duration of the entire

experiment was between 4 to 6 hours. An example of neural

responses to the elevator-drop stimuli is shown in Figure 1A.

In order to ensure that the input data captures the dynamics of

neural responses during the startle responses, we focused on a time

window of a few seconds centered on the occurrence of the startle

event. We used pre and post-event time intervals to obtain

estimates for the base and startle responses firing rates. As a first-

order approximation for the temporal variations of neural

responses to startle stimuli, namely rising time, maximum

amplitude and decay time, we split the sampling 1 second time

intervals into 2 bins of 500 ms width, and we used the spike counts
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in each bin as an estimate for the neural population activity. The

population neural response to a startle stimuli S can be formally

described then by the population vector: Xsi = (Xi1, Xi2,…, XiN),

where Xij is the frequency response of neuron j for the ith

repetition of stimuli S and N is the number of binned frequency

responses. For the data set presented in Figure 1A, when the

period of interest is 1 second and the number of bins is two, it

follows that the dimension of vector XSi is twice the number of

recorded neurons, N = 2N250 = 500. As a first approximation, the

responses to stimuli S can be then characterized by the mean

population responses XXS~
XR

i~1
Xi1,Xi2,:::,XiNð Þ=R, where R is

the number of repetition (R = 7), and by their standard deviations.

Analysis of the spike-raster plots and peri-event histograms of the

neural responses to the four types of startle stimuli indicates that

a subset of the recorded CA1 units is sensitive to all four types of

startling events, whereas other cells appeared to respond to either

air blow, drop, shake or sound alone, or to a combination of two

or three different types of startles. This categorical and hierarchical

organization seems to be a general property that exists across

individual animals [5,20]. The existence of these subpopulations

suggests that at the CA1 level the startling events are represented

by activity patterns of unique assemblies of neural cliques

organized in a hierarchical and categorical manner (Figure 1B).

Simulated data set 1–face perception in temporal

cortex
Based on the studies of single-unit recordings of face-selective cells

in the monkey inferior temporal cortex [37–40], we simulated the

responses of 250 simultaneously recorded neurons in the inferior

temporal cortex that respond to visual presentations of human

faces. We assume that we can monitor the base firing rates of the

neural population Xbasej = aj+gj, jM{1, 2,…, N} (N = 250), as well as

their responses to the presentation of four types of human faces

Xij = bij+gj, iM{1, 2, 3, 4}. Here aj represent the base firing rates,

bij are the magnitude of maximum increase/decrease of frequency

responses of neuron i during the jth face presentation and gj is the

noise term. As it appears that neural responses might be also

described by a hierarchical representation [38,40], we choose an

example supporting this view, with neural subpopulations

responding to either single perceptions or multiple selective

combinations of face perceptions (See illustration in Figure 1C).

The general categories illustrated in this example are general

responses to any face presentations, or responses to male, female

or famous face presentations.

Simulated data set 2–neural responses to arm

movements in the motor cortex
Our second simulated data set consists of motor cortex population

responses associated with arm movement in different directions

[25,41–43]. We assume that we can simultaneously monitor the

activities of 250 individual neurons during arm movements at four

different angles. The motor cortex neural responses to arm

movement along different directions are assumed to be described

by Xij = aj+bj G(hi2hj, sj)+gj, where aj represent the base firing

rates, bi are the magnitude of maximum increase/decrease, hj is

the preferred angle of neuron j, and gj is the noise, while hi is the

angle for ith direction. Here we assume that the tuning curves

G(hi2hj, sj) are Gaussian functions with widths sj. We construct

data sets with a hierarchical structure by assuming that the neural

population is composed of units from one the following five classes:

unresponsive, generally responsive, broadly tuned, sharply tuned

and angle-specific units. An example of such data set is illustrated

in Figure 1D.
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