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To examine the network-level organizing principles by which the
brain achieves its real-time encoding of episodic information, we
have developed a 96-channel array to simultaneously record the
activity patterns of as many as 260 individual neurons in the mouse
hippocampus during various startling episodes. We find that the
mnemonic startling episodes triggered firing changes in a set of
CA1 neurons in both startle-type and environment-dependent
manners. Pattern classification methods reveal that these firing
changes form distinct ensemble representations in a low-dimen-
sional encoding subspace. Application of a sliding window tech-
nique further enabled us to reliably capture not only the temporal
dynamics of real-time network encoding but also postevent pro-
cessing of newly formed ensemble traces. Our analyses revealed
that the network-encoding power is derived from a set of func-
tional coding units, termed neural cliques, in the CA1 network. The
individual neurons within neural cliques exhibit ‘‘collective cospik-
ing’’ dynamics that allow the neural clique to overcome the
response variability of its members and to achieve real-time en-
coding robustness. Conversion of activation patterns of these
coding unit assemblies into a set of real-time digital codes permits
concise and universal representation and categorization of discrete
behavioral episodes across different individual brains.

episodic memory � neural clique � neural code � startle � cell assembly

Understanding the network-level organizing principles that
allow the brain to form real-time neural representations of

episodic experiences is a central issue in neuroscience. Anatom-
ically, the hippocampus, and especially its CA1 subregion, is
known to be a crucial site for the formation of episodic memories
of events and places (1–6). In fact, individual hippocampal
neurons have been shown to respond to many external inputs
(7–13). Yet, the response variability at the level of individual
neurons poses a theoretical obstacle to the understanding how
the brain achieves its robust real-time neural coding of the
stimulus representation (14–16). It has been long thought that
mnemonic encoding of information may involve the coordinated
activity of large numbers of individual neurons (17, 18). How-
ever, virtually little is known about the actual real-time network-
level encoding patterns and their underlying organizing princi-
ples and mechanisms.

To study these issues, we have developed a high-density
recording technique for mice in which sophisticated genetic
analyses of cognitions are feasible (19, 20). In parallel, we have
also designed a set of simple, and yet robust, behavioral para-
digms by using startling episodes. We reasoned that such epi-
sodic events are likely to involve large numbers of neurons,
thereby greatly increasing the chance of finding them simulta-
neously and, consequently, facilitating the analysis of network-
level real-time encoding patterns in the brain. Here, we report
on our experimental measurements and mathematical descrip-
tions of CA1-encoding patterns associated with various mne-

monic startling episodes, as well as on the identification of
functional coding units, termed neural cliques, in the hippocam-
pal network. Furthermore, we describe a way to convert the
real-time activation patterns of neural clique assemblies to an
invariant binary code for categorizing and representing episodic
information across different individual brains.

Materials and Methods
In Vivo Recording and Spike Sorting. The 96-channel recording
array (in stereotrode format) was constructed and implanted
onto the head of B6BCA�J mice. The electrodes were advanced
slowly until reaching the CA1. The spike activities in freely
behaving mice in response to various startling episodes such as
an air blow to the animal’s back, free fall of the animal while
inside a small elevator, or earthquake-like cage shake were
recorded by Plexon Systems (Dallas) and then sorted by using the
MCLUST3.0 and KLUSTAKWIK 1.5 programs (21). Only stable units
(for at least 6 h) with clear boundaries and �0.5% of spike
intervals within a 1-ms refractory period are included in the
present analysis.

Data Analysis. The firing rates of each neuron during the 1 s that
followed the startle stimuli were computed by using two 500-ms
time bins ( fpoststartle, n). The neural responses were obtained by
using Rn � ( fpoststartle, n � fpre)�( fo � fpre), where fpre is the
prestimulus baseline firing rate and fo is the global mean
response frequency of the recorded excitatory neuron (2–3 Hz).
Multiple discriminant analysis (MDA) (22) was used to compute
a highly informative low-dimensional subspace that allows dis-
criminating among the different startling episodes. Projections
of training data points in this subspace were fit with multivariate
Gaussian distributions:

P�x� �
1

�2��N/2���1/2 exp� � �x � m� t��1�x � m��2�

to compute prediction of class membership for test data points
(leave-one-out method). Hierarchical clustering (22) was used to
group neurons with similar response properties as a way of
identifying encoding units in CA1. The MDA ensemble re-
sponses were then mapped into a startle-selective encoding
coordinate system to obtain efficient and universal binary codes
for categorizing startle episodes across different animals.

For a detailed description of construction of 96-channel
ensemble recording array (Fig. 6, which is published as support-
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ing information on the PNAS web site), in vivo recording and
spike sorting (Figs. 7 and 8, which are published as supporting
information on the PNAS web site), behavioral tests of startling
memories, and data analysis, please see Supporting Text, which
is published as supporting information on the PNAS web site.

Results
Ensemble Patterns of CA1 Single-Unit Activity Triggered by Startling
Events. Because the brain can produce robust episodic memories
of startling events (e.g., devastating earthquakes, roller coaster
rides, shark attack, etc.) even upon a single exposure (23–25), we
have correspondingly designed a set of behavioral paradigms and
used three different types of startling stimuli delivered to the
mice as a way of creating discrete episodic startle memories: air
blow, a sudden blow of air to the animal’s back (mimicking an
owl attack from sky); drop, a short vertical free fall inside a small
elevator (recreating the mouse’s experiences inside a cookie jar
that falls from a kitchen shelf); and shake, an unexpected brief
earthquake-like shaking of the mouse’s cage. We used computer-
controlled mechanical devices for controlling the precise timing
and intensity of these startling stimuli. Such startling episodic
events are capable of producing robust startle memories, as
evident from our measurements of the 3-h retention of place
conditioning memory (Fig. 9, which is published as supporting
information on the PNAS web site).

We simultaneously recorded 260, 210, 148, and 138 individual
CA1 units in mice A, B, C, and D, respectively, while subjecting
them to seven repetitions of each of the above-mentioned
startling stimuli. These stimuli produced collective changes in
firing rates and activity patterns within a subset of the recorded
neuronal populations. As an example, the spike rasters of 260
simultaneously recorded single units from mouse A show dy-
namical changes in the firing patterns of many CA1 neurons after
the occurrence of single startling episodes of air blow, drop, and
shake (Fig. 1).

Diversity in CA1 Cell Response Selectivity to Startling Episodes. To
analyze the neural basis underlying the formation of episodic
memory, we first examined the temporal dynamics of each
individual CA1 cell in response to a variety of startling events.
Although a significant proportion of the simultaneously re-
corded CA1 cells did not respond to any of the startle stimuli, the
remainder exhibited significant changes in firing rates. In gen-
eral, based on their temporal response duration, dynamical
changes triggered by startling episodes can be generally divided
into four major firing modes: transient increase, transient de-
crease, prolonged increase, and prolonged decrease (see Fig. 10,
which is published as supporting information on the PNAS web
site). The transient changes were as short as 250 ms or less,
whereas the prolonged increases lasted up to 40 s in duration.

Of the total of 756 single units recorded (pooled from four
animals), 13.5% exhibited transient increases, 31.7% showed
prolonged increases, 1.9% had transient decreases, and 1.4%
responded with a prolonged decrease in their firing frequency.
Thus, the ratio of neurons showing increased vs. decreased firing
is �14 to 1. We further note that although the spike discharge
frequency and interspike-intervals of these individual neurons
were quite variable across repetitions (for several examples, see
peri-event spike rasters in Fig. 2; see also Fig. 10), response
modes to the same type of startle were almost always consistent
in terms of their temporal dynamics (i.e., transient vs. prolonged,
increase vs. decrease).

We then analyzed the response-selectivity of these CA1 cells.
Spike-raster plots and peri-event histograms reveal that some of
these CA1 neurons responded to all three types of startling
events (Fig. 2 A, general startle cells), whereas other cells
appeared to only respond to air blow, drop, or shake (Fig. 2
B–D). Importantly, we have also observed many CA1 cells that

reacted to combinations of two different types of startles,
responding to both startles either equally or differentially (Fig.
2 E and F), thereby reflecting the hippocampal binding function
of cortical inputs. This diversity of response-specificity suggests
that the startling events are likely to be represented in CA1 by
activity patterns of unique ensembles of neurons.

Effects of Environmental Contexts on Startle-Induced Individual Neu-
ronal Responses. Because the hippocampus is involved in the
formation of episodic memory that contains not only ‘‘what’’
information but also ‘‘where’’ information (1–5, 8), we next
asked to what extent the firing patterns of CA1 cells triggered by
startling events are influenced by the environmental contexts in
which the startles occur. To address this question, we repeated
the sudden air blow stimuli in two distinct cages and the drop
stimuli in two different elevators. Although a given type of
startling stimuli triggered similar responses in many of the
responsive CA1 units regardless of the environmental context
(Fig. 2 G and H), some CA1 cells exhibited context-specific firing
changes (Fig. 2 I and J). Thus, these contextual experiments
demonstrate that the startle-triggered firing changes in some
CA1 neurons are not only stimulus-dependent, but also depend
on the context in which the event occurs, thereby reflecting a
clear neural integration of both what and where information in

Fig. 1. Startle-induced ensemble of single-unit firing patterns in CA1. Spike
rasters of 260 simultaneously recorded single units from mouse A during a
period of 1 s before and 2 s after the occurrence of single startling episodes of
air blow (A), drop (B), and shake (C) (t � 0 marked with vertical red line). x axis,
time scale (seconds); y axis, the numbers of simultaneously recorded single
units (n � 260). The startle stimulus durations are indicated as a bar next to the
vertical red line above the spike raster. Although many neurons did not
respond to startling stimuli, a significant portion of recorded units exhibited
dynamical changes in their firing rates.
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the hippocampal region, a hallmark mnemonic function of the
hippocampus (1, 2).

Ensemble Pattern Classification and Visualization of CA1 Network
Encoding. The existence of a variety of responsive individual neu-
rons suggests that startling events may be represented through
distinct activity patterns at the network level by an ensemble of
individual neurons. What are those ensemble encoding patterns?

How can these encoding patterns be mathematically described and
even visualized? To provide an intuitive solution that would facil-
itate a search for the relevant network-encoding patterns that might
be hidden among the activity of the hundreds of simultaneous
recorded neurons we used MDA (22) to compute a highly infor-
mative low-dimensional subspace among the firing patterns of
responsive neurons. MDA is a supervised dimensionality-reduction
method that is well suited for identifying and integrating the
classification-significant statistical features of neural population
responses to distinct types of known stimuli.

In our implementation of MDA, a startle trial was represented
as a high-dimensional feature vector of normalized neural
responses Rn � ( fpoststartle, n � fpre)�( fo � fpre). Each vector has
k � n 	 m dimensions, where n is the number of CA1 neurons
(e.g., in Mouse A, n � 260), and m is the number of time bins
(e.g., m � 2 for 500 ms over a 1-s response period). Responses
that fell below a threshold criterion were eliminated, leading to
a sparse set of neural features included in the analysis (for
example, in mouse A of the 260 	 2 features, 185 features with
R 
 0.5 were used, with 160 features selected from the first
500-ms poststimulus bins and 25 feature vectors from the second
500-ms bins). In other words, the nonresponsive neurons are
excluded because they are unlikely to carry neural information;
as a result only the responsive neurons are used for MDA
analysis.

Next, we calculated the low-dimensional MDA subspace that
is maximally discriminating for the response matrix (see Sup-
porting Text). Projecting the neural population responses to given
startle events onto single points in this subspace shows that
repeated startle responses form clearly well separated clusters
(Fig. 3A), which are distinct from the cluster formed by the rest
projections. In other words, CA1 ensemble activity patterns
elicited by various startling stimuli can be mathematically de-
scribed and conveniently visualized as specific startle clusters in
a low-dimensional encoding subspace (here in three dimen-
sions), achieving levels of startle discrimination not seen in
individual CA1 neuron responses. In addition, air blow and drop
environmental context representations can be further separated
by using two additional classification steps (Fig. 3 B and C,
respectively). We also confirmed that nonresponsive cells indeed
did not contribute to these classifications as adding them to
MDA analysis did not significantly change the MDA patterns
(data not shown).

How well can the population encoding patterns predict be-
havioral startle identity? To address this question, we fit the
clusters formed by training data with Gaussian ellipsoids (two
standard-deviation boundaries are indicated in Fig. 3A) and
calculated the probabilities that the test points belong to the
correct class by employing a cross-validation method (no test
data were used in the training). The classification results (Table
1, based on a variation of the leave-one-out cross-validation
method) indicate that the prediction accuracy is typically 
90%
and in nearly all of our recordings is 
80% (overall mean 92%).

To further confirm our finding that various startle-triggered
ensemble responses of individual CA1 neurons form distinct
encoding patterns in low-dimensional subspaces, we used an
independent classification method, known as principal compo-
nent analysis (PCA) to analyze the data sets. PCA is an unsu-
pervised, linear dimensionality reduction tool that is often used
for identifying the structure that best represents the data in a
least-square sense (22). Similar to our observations from MDA
analysis, the distinct encoding structure of the CA1 population
patterns is revealed again by using this independent dimension-
ality-reduction method (see Fig. 11 and Table 2, which are
published as supporting information on the PNAS web site).

Fig. 2. Diversity and selectivity of CA1 neuronal responses to different startle
stimuli. Spike raster plots and peri-event histograms (time bin, 100 ms) for
representative units are shown. In A–F, Top, Middle, and Bottom correspond
to air, drop and shake events, respectively. (A) A unit responsive to all three
types of startles (general-startle unit). (B) A unit that increased its firing
selectively to air blow (air-blow unit). (C) Drop-selective unit. (D) Shake-
selective unit. (E) Air- and drop-responsive unit. (F) Drop- and shake-
responsive unit. (G) A unit that responded to air blows in both contexts. (H) A
unit that responded only in context B. (I) A unit that responded to drop
similarly in elevator A and in elevator B. (J) A unit that exhibited a strong drop
response only in Elevator B. All histograms use a time bin of 200 ms. Please note
the response variability of each individual neuron across the repeating seven
trials (y axis). x axis indicates the time scale (seconds). The vertical red lines in
spike rasters indicate the time marker for the occurrence of startling events.
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Monitoring of Real-Time Encoding and Dynamical Postevent Process-
ing of CA1 Network Traces. MDA provides a sensitive and math-
ematical means of measuring and visualizing the ensemble
neural activity patterns in a highly informative encoding sub-
space. This dimensionality-reduction method can further be used
to dynamically monitor the population firing patterns by using a
sliding-window technique (1-s width; see Supporting Text). Using

the fixed matrix coefficients produced by the MDA method, we
can compute the instantaneous projection of neural responses
during the entire experiment. As such, the temporal evolution of
the ensemble activity patterns can be directly visualized as
dynamical trajectories in the encoding subspace. For example,
during the baseline state before startles, the instantaneous
projection was confined to the rest ellipsoid; however, upon the
actual startling stimulus, we observe a planar trajectory that
begins in the rest cluster, quickly visits the corresponding startle
cluster, and then returns to rest (an example for air blow is shown
in Fig. 3 D–F, and for drop, black trajectories, see Fig. 12, which
is published as supporting information on the PNAS web site).

Intriguingly, using this approach, we further observed spontane-
ous excursions from the rest ellipsoid during the poststartling event
period (Fig. 3D). These intrinsic excursions occurred in all four
animals and had the directional specificity as well as the charac-
teristic geometric shape of the original startle trajectories. More-
over, their spontaneous trajectories took place on the similar time
scale and were also confined in the same plane but typically with a
smaller magnitude than the startle-evoked trajectories (Fig. 3 D and
E, red and blue trajectories for reactivations after an air-blow
episode). We also measured the time of these spontaneous excur-
sions, which were observed to occur causally at several seconds to
minutes, with apparently random intervals, after the actual startles
(Fig. 3F). For example, the timing of the two reactivations after the
actual air-blow startle shown in Fig. 3D is t1 � 31.6 s (red
trajectories) and t2 � 54.8 s (blue trajectories) (Fig. 3F), whereas the
timing of a reactivation in another case (drop) is at 107.9 seconds
(Fig. 12). The number of reactivations that followed the original
startles ranged between zero and five in our experiments. There-
fore, our analyses have allowed us to monitor the dynamics of
postevent spontaneous reactivations and processing of CA1 ensem-
ble patterns.

Identification of Functional Coding Units, Neural Cliques, in the CA1
Network. Our finding that the representations of startle events form
tight, well separated clusters in a low-dimensional encoding sub-
space prompted us to examine in detail which neurons in the CA1
population are responsible for encoding the different events and
what essential features of the neural signals are used to accomplish
that. Thus, we used agglomerative hierarchical clustering (22), a
pattern classification method that can aggregate units by iteratively
grouping together neurons with minimally distant responses. The
clustering results reveal the existence of various neural groups, or
neural cliques, with similar response properties (Fig. 4A). These
neural cliques exhibited an increase in firing rate to all three types
of startles (i.e., a ‘‘general startle clique’’), to one type of startle (i.e.,
‘‘air-blow clique,’’ ‘‘drop clique,’’ and ‘‘shake clique’’), and to a
subset of mixed startles (i.e., drop�shake clique, drop�air-blow
clique, and air-blow�shake clique), respectively.

How significant a role do these neural cliques play in CA1
encoding classification? We evaluated the contribution of these

Fig. 3. Classification, visualization, and dynamical decoding of CA1 ensem-
ble representations of startle episodes by MDA methods. (A) Firing patterns
during rest (dots, yellow ellipsoid), air blow (circles, green ellipsoid), drop
(triangles, blue ellipsoid), and shake (stars, magenta ellipsoid) epochs are
shown after being projected to a three-dimensional space obtained by using
MDA for mouse A; MDA1–3 denote the discriminant axes. Both training (dark
symbols) and test (red symbols) data are shown. After the identification of
startle types, a subsequent MDA is further used to resolve contexts (full vs.
empty symbols) in which the startle occurred for air-blow context (B) and for
elevator drop (C). (D) Dynamical monitoring of ensemble activity and the
spontaneous reactivation of startle representations. Three-dimensional sub-
space trajectories of the population activity in the two minutes after an
air-blow startle in mouse A are shown. The initial response to an air blow
(black line) is followed by two large spontaneous excursions (blue and red
lines), characterized by coplanar, geometrically similar lower amplitude tra-
jectories (directionality indicated by arrows). (E) The same trajectories of A
from a different 3D angle. (F) The timing (t1 � 31.6 s and t2 � 54.8 s) of the two
reactivations (marked in blue and red, respectively) after the actual startle (in
black) (t � 0 s). The vertical axis indicates the air-blow classification probability.

Table 1. Prediction power in the MDA-computed encoding subspace for startle type
and context

Mouse Rest
Air

blow
Air blow in
context A

Air blow in
context B Drop

Drop in
elevator A

Drop in
elevator B Shake

A 99 99 99 94 99 91 98 98
B 99 99 94 95 97 92 93 93
C 99 99 91 92 99 80 87 90
D 99 90 91 75 96 66 75 83

Percent correct predictions were evaluated by using 1,000 random combinations of training�test data for each
mouse. Test data was excluded from the training set. The startle type was first determined (columns: rest, air blow,
drop, and shake), followed by context classification for air blow (context A or B) and drop (elevator A or B). Data
sets contained 260, 210, 148, and 138 simultaneously recorded CA1 units in mice A, B, C, and D, respectively.
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neural cliques to the startle representations by repeating the MDA
analysis while sequentially adding clique members to an initial set
of nonresponsive neurons. We find that a random selection of 40
nonresponsive cells as an initial set provides no discriminating
power, yielding only overlapping representations (Fig. 4B). In
contrast, inclusion of the 10 most responsive cells from the general
startle clique leads to good separation between the rest cluster and
the startle clusters but not among startle clusters. The selective
discrimination of drop startles is obtained by the addition of as few
as 10 top neurons from the drop clique. Similarly, the inclusion of
10 air-blow clique and 10 shake clique top neurons subsequently
leads to full discrimination between all of the startle types. The
increase in prediction power by the sequential addition of neural
cliques is showed in Table 3, which is published as supporting
information on the PNAS web site. In addition, we show that these
40 responsive neurons alone can achieve reliable classification of
startle events (Table 3, last row). Thus, these 40 most responsive
clique neurons are clearly capable of achieving accurate pattern
classifications, whereas 40 unresponsive neurons provide essentially
no discriminating power at the chance level. These findings suggest

that these neural cliques constitute the basic functional coding units
for encoding the identity of different startling episodes.

Converting the Activation Pattern of Neural Cliques into a Real-Time
Binary Code. The MDA encoding subspace we have examined so
far provides an efficient separation of the startle episodes based
on the recorded ensemble activity patterns. However, in contrast

Fig. 5. Binary activation codes and real-time encoding robustness of neural
cliques. (A) Conversion of activation patterns of neural clique assembly into
real-time binary codes. Individual member neurons comprising neural cliques
are illustrated by different colored circles. The activation function of a given
clique at each network level can be mathematically described (equation in
Right; also see Fig. 14, which is published as supporting information on the
PNAS web site). Neural responses were weighted by using a remapping
procedure and smoothed with a Gaussian filter (� � 100 ms) as shown in Left
(�1 standard deviation confidence intervals are shown in corresponding
colors). Rows correspond to the different startling episodes, whereas columns
indicate the different neural cliques (general startle, air blow, drop, shake, air
blow context A, and drop context B). The binary activation patterns corre-
sponding to each event can be mathematically converted to a set of binary
codes (Bottom Right, after the defined sequence of the cliques). As such, the
clique activation codes are as follows: 110010 for air blow in context A, 110000
for air blow in context B, 101000 for drop in elevator A, 101001 for drop in
elevator B, and 100100 for shake. Sparse membership distributions of CA1
neural cliques are illustrated (Top Left). (B) Real-time encoding robustness of
neural cliques is derived from collective cospiking of its individual members.
Spike rasters and weighted responses of the top 10 drop clique neurons (listed
in y axis) during a drop event (1 s before and after the startle, x axis) are shown
as an example. Although responses of the individual member (neuron) are
quite variable from trial to trial, the consistency and specificity of the cospiking
clique responses is evident from each drop episode (first five episodes are
listed). The drop clique exhibited no significant responses to air-blow or shake
episodes (Bottom, last two graphs on right). Robust cospiking of membership
neurons in the cliques is also preserved at the finer time scale (20–30 ms) (see
Fig. 13).

Fig. 4. Identification of functional encoding units in the CA1 cell assembly.
(A) Hierarchical clustering of the responses of 260 simultaneously recorded
neurons to the three different types of startles in mouse A reveals the
existence of seven major neural cliques: general startle, drop–shake, drop,
shake, shake–air blow, air blow, and air blow–drop (indicated by different
colors on the dendrogram tree structure in Left). Nonresponsive units are
grouped in the lower half. The color scale bar (Left) indicates the normalized
response magnitude. (B) Discriminating power is derived from specific neural
cliques. An initial group of 40 nonresponsive neurons is ineffective in produc-
ing discrimination (Top), whereas addition of the top 10 general startle clique
neurons separates the rest cluster (yellow) from the startle clusters. Further
inclusion of the top 10 drop clique neurons results in separation of the drop
cluster (blue) from the still overlapping air-blow (green) and shake (magenta)
clusters. The addition of the top 10 air-blow clique neurons and 10 shake
clique neurons achieves full separation (Bottom) (see also Table 3). This
application of MDA illustrates that these cliques play an important role in
achieving discrimination for each category.
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to the specificity exhibited by neural cliques, this MDA subspace
does not show startle-type selectivity along any of its discrimi-
nant axes. To translate the ensemble responses into a startle-
selective encoding coordinate system, we assigned new positions
for the cluster centers so that they are linearly mapped into a
clique-space, where each axis directly corresponds to a particular
clique, thus projecting specific activation patterns to 1 and the
absence of activation to 0. This mathematical operation achieves
the reorientation of the main axes of the low-dimensional
encoding subspace by inverting the matrix containing the centers
of startle representations in that space (see Supporting Text for
the matrix inversion step).

By projecting the ensemble patterns directly into this clique
space, the recorded neural activities are now mapped onto a set
of highly reproducible and selective responses. Each clique-space
projection vector (columns in Fig. 5A) is clearly selective to a
specific combination of startles (i.e., general-startle, air blow,
drop, etc.), and does not respond to additional features. In
addition, this selectivity also extends to the representation of
contexts. Furthermore, the weights in the projection vectors
strongly correlate with the responsiveness of neurons in the
corresponding clique (data not shown). As a result, the activated
cliques can be directly detected by using simple threshold
crossing and, consequently, their collective identity uniquely
codes for any given startle. For example, based on a predefined
sequence of clique assembly (general-startle�air blow�drop�
shake�air subcontext�drop subcontext), the activation code
110010 corresponds to the internal representation of the air blow
in context A, 110000 to air blow in context B, 101000 to drop
elevator A, 101001 to drop elevator B, and 100100 to shake.

Importantly, these binary codes can be dynamically implemented
to detect the occurrence of the internal representations of startling
episodes. For example, using the thresholded responses of these
cliques, we can compute the ‘‘hit ratio’’ for correctly matching
activation patterns with the binary codes. The prediction perfor-
mance obtained by using these codes are the same to the ones listed
in Table 1 (see also Table 4, which is published as supporting
information on the PNAS web site).

Identification of neural cliques as the functional coding units for
internal representation has prompted us to further look into the
robustness of real-time encoding by neural cliques. This finding is
a particularly important issue, as it is well known that a single
neuron often shows large variations in both spike discharge and
interspike intervals in response to repetition of identical stimuli
(14–16). We found that these individual members within each
clique fired tightly together in close temporal proximity during
startle episodes. This collective cospiking feature allowed the
neural cliques to overcome the response variability of their indi-
vidual members and, thus, to achieve real-time encoding robust-

ness. For example, the neural clique formed by the 10-drop neurons
used in Fig. 4 consistently produced robust response to drops, but
not to air blow or shake events (Fig. 5B). Further examination of
their temporal dynamics at finer time scale (20–30 ms) again
confirmed that the collective cospiking of these individual neurons
has greatly enhanced real-time signal-to-noise robustness (Fig. 13,
which is published as supporting information on the PNAS web
site). Therefore, the cospiking of clique neurons is capable of
providing a network-level mechanism for real-time encoding ro-
bustness and can act as a robust internal timer to reliably signal the
occurrence of external events.

Discussion
A central issue in the study of neural coding in the brain is the
response variability of individual neurons (14–16). This variability
at the level of individual neurons has posed a theoretical challenge
for understanding how the brain achieves its real-time encoding and
decoding of behavioral experiences. A traditional way to deal with
this issue is to average the response of an individual neuron over
many repetitions and trials. Although it allows the identification of
event-related neural response, this practice of data averaging
unfortunately loses crucial information regarding real-time neural
coding functions. Here, we have described and visualized the
network-level encoding patterns and postevent immediate process-
ing of startling episodic experience in the CA1 region of the
hippocampus. We have further identified network-level functional
coding units capable of overcoming the response variability of
individual neurons and achieving real-time network representation
of startling episodic experiences. It would be of interest to investi-
gate how the individual neurons that comprise a functional coding
clique are anatomically connected and how they are modulated by
synaptic plasticity (26–28), and to further dissect to what extent they
reflect the sensory, emotional, mnemonic, or even conceptual
aspects of the events (7, 23). Nonetheless, when the activation
patterns of these coding units are converted (29) into a set of
concise digital codes, they seem to permit universal representation
and categorization of discrete behavioral episodes across different
animals. Therefore, the ‘‘neural clique cospiking’’ principle pro-
vides a plausible network-level basis by which the nervous systems
can achieve real-time neural coding and processing of behavioral
information. For more discussion on our findings, see Extended
Discussion in Supporting Text.
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