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Abstract Evidence from a variety of recording methods
suggests that many areas of the brain are far more
sparsely active than commonly thought. Here, we review
experimental findings pointing to the existence of neurons
which fire action potentials rarely or only to very specific
stimuli. Because such neurons would be difficult to
detect with the most common method of monitoring
neural activity in vivo—extracellular electrode record-
ing—they could be referred to as ‘‘dark neurons,’’ in
analogy to the astrophysical observation that much of
the matter in the universe is undetectable, or dark. In
addition to discussing the evidence for largely silent
neurons, we review technical advances that will ulti-
mately answer the question: how silent is the brain?

Introduction

Sequences of neuronal action potentials are thought to
be the basic symbols used to represent and transmit
information in the nervous system. Properties of the
ongoing pattern of action potentials, such as frequency,
timing and possibly synchrony, underlie our ability to
perceive, think about, and act upon the world. Despite
their central importance, there are many questions about
action potential activity in the brain that we cannot yet
answer. One such question is basic: what is the mean
firing rate of neurons in the brain? Or, put another way:
how silent is the brain?

Here, we review evidence that many neurons in the
brain are far more silent than commonly thought. These
silent neurons could be referred to as ‘‘dark neurons,’’ in
analogy to the astrophysical observation that much of
the matter in the universe is undetectable, or dark (for a
different use of the term ‘‘dark matter’’ in neuroscience,
see Binzegger et al. 2004). The presence of neurons that
do not fire action potentials is counterintuitive, since
electrical activity is central to neuronal signaling and to
what distinguishes neurons from other cell types.
Moreover, tissue is energetically expensive to construct
(Raichle and Gusnard 2002), suggesting that ‘‘silent’’
neurons must play some necessary role in brain function
even though they do not fire during typical experiments.
But what could this role be?

The purpose of this review is to present a coherent
perspective on the issue of silent neurons. To do so, we
pull together related information from a number of
studies employing a diverse set of recording and analysis
methods, and dating back nearly four decades. The topic
of silent neurons is particularly timely in light of recent
technological advances in neural imaging and recording.
In addition to reviewing the evidence for silent neurons,
we highlight new techniques that offer the means to re-
cord from entire populations of neurons, and that are
already providing results that may appear at odds with
those of traditional methods.

Accumulating evidence for neural silence

Ever since the pioneering studies in the 1950s by
Amassian (1953), Hubel (1957), and Mountcastle et al.
(1957), the tool of choice used by in vivo experimental
neurophysiologists for cellular recording has been the
metal microelectrode. This workhorse of neurophysiol-
ogy measures action potentials by detecting small elec-
trical signals that occur outside a neuron resulting from
induced current flow when the neuron fires an action
potential. Consequently, the method is able to detect a
neuron when it fires, and does not require physical
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contact. However, with this method neurons that do not
fire are not detected.

In 1968 David Robinson, in his review of single-unit
electrode technology, pointed out a large discrepancy
between the number of neurons present near a recording
microelectrode and the number of neurons actually de-
tected (Robinson 1968). Using theoretical calculations
of the electrical fields surrounding a spiking neuron
(Rall 1962), he estimated that along a 2-mm track in
macaque monkey brain an electrode should encounter
around 100 neurons. He observed, however, that in
practice only a few neurons along the track are
observed. He noted that ‘‘why this is so is a very dis-
turbing question to users of microelectrodes.’’ His early
suspicion has been supported by work in the decades
since; now, evidence for such discrepancies comes from
many brain areas (Table 1).

For instance, in anesthetized rats, Henze et al. (2000)
recorded from hippocampal neurons by simultaneous
intracellular and extracellular recording, thus allowing
them to know by intracellular recording the exact
position of a firing neuron. They could reliably detect
neurons from at least 60 lm away, and on average they
found six active neurons at a time. However, simple
geometrical calculations based on anatomical data show

that within 60 lm of their extracellular recording elec-
trodes, hippocampal area CA1 of rat would contain at
least 120 neurons with a detectable electrical signature, a
number far larger than six. The existence of a large
number of ‘‘silent cells’’ has also been confirmed under
these conditions by antidromic activation (Thompson
and Best 1989), in which neurons were made to fire by
evoking spikes in axons which then propagate back to
the cell body. Thompson and Best (1989) also showed
that apparent silence is unlikely to arise from the use
of barbiturate anesthesia, which in area CA1 actually
increases neural activity.

A comparison of extracellular recordings with patch-
clamp recordings from the same brain regions suggests
that extracellular recordings reflect a selection bias that
inflates estimates of activity. In layers IV and II/III of
rat barrel cortex, extracellularly recorded neurons
appear to fire spontaneously or in response to principal
whisker stimulation at a rate of 0.8–1.5 spikes per sec-
ond (Brecht et al. 2003; Brecht and Sakmann 2002;
Diamond et al. 1993). In contrast, whole-cell or cell-
attached patch-clamp recording methods reveal firing
rates nearly 10-fold lower, 0.05–0.15 spikes per second
(Brecht et al. 2003; Brecht and Sakmann 2002; Margrie
et al. 2002). The same research group has found a similar

Table 1 Evidence for silence or highly sparse activity among neurons

Brain area Method Evidence for sparse activity

Zebrafinch nucleus
HVC

Extracellular recording
with antidromic stimulation

Neurons projecting to song nucleus
RA fire at most one burst per
song motif (Hahnloser et al. 2002)

Rat hippocampus,
area CA1

Comparison of intracellular
and extracellular recordings

10- to 100-fold fewer neurons observed
than expected from neuron
density (Henze et al. 2002)

Rat hippocampus,
area CA1

Single unit Sixty-five percent of neurons active during
anesthesia become silent during waking
behavior (Thompson and Best 1989)

Rat barrel neocortex,
layers 4 and 2/3

Blind selection of neurons
by whole-cell patch-clamp recording

�10-fold lower spike rate measured with
blind patch versus single-unit methods
(Brecht et al. 2003; Brecht and Sakmann 2002)

Rat primary auditory
neocortex

Blind cell-attached patch-clamp
recording

An average of 1 spike/cell evoked in
response to a tone (DeWeese et al. 2003)

Rat olfactory bulb Whole-cell patch-clamp recording 10- to 50-fold lower spike rate measured with
blind patch versus extracellular single-unit
methods (Margrie et al. 2002)

Rat cerebellar granule cells Blind patch Average spontaneous firing rate of 0.5 Hz
(Chadderton et al. 2004)

Rabbit primary motor
neocortex

Extracellular with antidromic
stimulation

Seventy-five percent of neurons silent
during walking (Beloozerova et al. 2003)

Rabbit primary
somatosensory neocortex

Extracellular with
antidromic stimulation

Most neurons projecting within neocortex
could not be made to spike with sensory
stimulation (Swadlow and Hicks 1996)

Cat primary visual neocortex Microelectrode array �10-fold fewer neurons observed
(Blanche et al. 2005)
than expected from neuron density

Monkey neocortex Comparison of recordings
with known anatomy

Far fewer neurons are seen in extracellular
recordings than expected from the spread of
extracellular potential fields (Robinson 1968)

Human neocortex Theoretical calculation of
metabolic costs

Energetics limits average firing rate to 0.16 spikes/s,
constraining the number of highly active
cells to about 1 in 100 (Lennie 2003)



discrepancy in rat olfactory bulb mitral cells, in which
patch-clamp recordings yield lower spike rates than do
extracellular unit recordings (Margrie et al. 2002). These
patch-clamp measurements may have their own selec-
tion biases, in particular toward the larger neurons that
are more likely to be encountered during ‘‘blind’’ pene-
trations, and due to possible differences in the ability of
the recording pipette to seal with the cellular membrane.
However, patch-clamp methods do not select neurons
on the basis of activity, and therefore may offer a more
accurate estimate of true firing rate.

Another approach to measuring neuronal activity
levels has been provided recently by a method that re-
cords from many neurons at once. Blanche et al. (2005)
recorded activity from cat primary visual neocortex
using a silicon microelectrode array. Arrays had
recording sites spaced �50–75 lm apart and were placed
between neocortical layers II and VI. These arrays
allowed the authors to record from 20 to 100 neurons
simultaneously. How many neurons should have been
observable by the array? The density of neurons in layers
II–V of cat primary visual neocortex is 60,000–80,000
per mm3 (Sholl 1956). Approximately 1 mm · 0.15 mm
array should cover, and therefore report activity from,
about 700 neurons within the array boundaries
(assuming a recording distance of 50 lm), and even
more if significant numbers of neurons are detectable at
a larger distance from the electrode array. In practice,
however, only about 60 neurons were routinely
observed. This suggests that the remaining neurons, over
90% of the total, were damaged or silent. Careful
anatomical studies, and the fact that it was possible to
record from the same neurons upon repeated advances
and retractions of the electrode, suggest the latter.

In contrast to this large discrepancy in neocortex
between the number of neurons that should be record-
able and the number actually seen, recent recordings in
retina (Segev et al. 2004) indicate that comparable
silicon arrays with a planar multielectrode arrangement
can in fact record 80–100% of neurons present near the
array. In these recordings, the spacing of the multielec-
trode array was closely matched to the properties of the
target ganglion cell layer tissue. In the tiger salamander
retina where these recordings were performed, this layer
is practically two dimensional. The planar nature of the
tissue and the array electrode spacing resulted in each
ganglion cell generating a unique pattern of activation
on the array. The use of a special spike sorting technique
then allowed the efficient detection and sorting of spikes
into their unique neuronal origins. The ganglion cells
were also counted directly after retrograde labeling with
a fluorescent dye placed at the stump of the optic nerve.
Comparison of these values with the number of cells
present in the extracellular signal indicates that in the
retina, nearly all ganglion cells are active and detectable
by extracellular recording. On the one hand, this study
in retina suggests that electrode arrays may be capable
of recording all the neurons within the expected
recordable volume and that the silence seen in neocortical

array studies therefore evidences truly silent neurons.
On the other hand, there may be important differences
in tissue–electrode interactions between retina and
neocortex that make extrapolation between the two
recording locations difficult.

Why so many silent neurons?

What explains the large discrepancy between the number
of neurons expected and the number seen in so many
extracellular recordings? In one scenario, neurons might
be missed simply because of technical limitations. For
instance, neurons could be silenced by recording elec-
trode-induced damage or shielded from the electrode by
glial walls that impede electrical current flow (Robinson
1968). Even the method of analysis could, to some
degree, cause the spurious appearance of silence. For
instance, during extracellular recording the raw signal
needs to be sorted into single unit activity (Towe and
Harding 1970). In many cases, this is done by dimen-
sion-reduced cluster analysis, for example, after plotting
spike width versus spike amplitude. With these methods
neurons that fire at very low rates usually do not form
substantial clusters and are likely to be missed. In such
cases, there is a sampling bias caused by the method of
analysis.

However, these technical limitations are unlikely to
offer a complete explanation of apparent neural silence.
In their hippocampal recordings, Henze et al. (2000)
pointed out that in area CA1 the ratio of recorded
pyramidal cells to recorded interneurons, 6 to 1, is much
lower than the relative abundance of these neurons, 33
to 1, determined from anatomical studies. Thus, pyra-
midal cells appear to be disproportionately likely to be
missed. Assuming that most interneurons are recorded
(a possibility, since hippocampal interneurons fire toni-
cally at consistently high rates; Freund and Buzsaki
1996), this discrepancy implies that 6/33, or less than
20% of pyramidal neurons, are detected by extracellular
recording. This estimate is consistent with the abun-
dance of silent neurons observed using intracellular
recording.

A second class of explanations assumes that there is
indeed a large population of very quiet neurons. These
silent neurons may be silent over long or short periods of
time. Silent neurons may simply have sparse stimulus
selectivities (Olshausen and Field 2004); that is, respond
only to very specific stimuli. Such stimuli may be suffi-
ciently specific that they have not been routinely used in
experiments. Silent neurons could also be available for
recruitment to higher activity levels through plasticity
mechanisms.

Neuronal silence may well be the norm in the neo-
cortex. Theoretical calculations have been used to
compare total neocortical energy consumption to the
cost of single spikes (Lennie 2003; Olshausen and Field
2004). Such analysis suggests that human neocortical
neurons fire at very low baseline rates of up to 0.16



spikes per second on average (Lennie 2003). This low
average rate places a strong bound on the number of
highly active neurons such as those commonly studied
in perceptual and cognitive tasks, which have been
reported to fire tens of spikes per second. Although such
an energetic calculation can be sensitive to assumptions,
the discrepancy suggests that highly active neurons
could constitute as few as 1 in 100 neurons.

Why we need to know how silent the brain is

Studies suggesting the existence of silent neurons pose a
fundamental challenge to our understanding of brain
physiology. Have neuroscientists routinely been record-
ing from only the most active neurons, which constitute
a small minority? And, if so, how representative are
these neurons aside from their higher firing rates? Our
understanding of how information is represented in the
brain depends critically on the answers to these ques-
tions.

Many current models of cortical neurons are based
on experimental observations of broad ‘tuning curves’
where an individual neuron responds similarly to a
broad range of stimuli and experimental conditions,
gradually modulating its response as a function of the
experimentally controlled variables (Georgopoulos et al.
1982; Maunsell and Van Essen 1983; O’Keefe and
Dostrovsky 1971). These observations have led to the
popularity of population coding models (Georgopoulos
et al. 1986; Pouget et al. 2003), where a reliable repre-
sentation by a population replaces the coarse noisy
coding of an individual neuron. However, the apparent
sparseness of neuronal activity—that is, the apparent
presence of neurons that are silent most of the time or
fire at extremely low rates—may render greater plausi-
bility to other well-known models where information is
represented in the selection of which small subset of
neurons is active (out of a large set of silent neurons).
Examples of sparsely active models are common in the
artificial pattern recognition literature (Rosenblatt 1962)
and include, for example, Marr’s model of efficient
encoding by cerebellar Purkinje neuron activation (Marr
1969). In the neocortex, encoding of complex stimulus
features by single neocortical neurons (Gross 2002) led
to a suggestion by Barlow (1972) that ‘‘at progressively
higher levels in sensory pathways information about the
physical stimulus is carried by progressively fewer active
neurons.’’ A compelling example of this behavior was
demonstrated recently by Quiroga et al. (2005) who
described neurons in the human brain that were highly
selective to particular categories of stimuli, such as to
pictures of the actress Halle Berry. Interestingly, Barlow
did not mention the experimental difficulty that was
described earlier by Robinson (1968), and a link between
sparse neural codes (i.e. neural codes that rely on
neurons being extremely selective to one special feature)
and experimental recording bias has only recently been
drawn by Olshausen and Field (2005).

The possibility that in some brain regions only a
sparse subset of neurons are active at once also opens up
new possibilities for how information might be stored.
In neocortex, synaptic connectivity is highly nonrandom
(Song et al. 2005), and particular sequences of neural
activity can be highly favored (Yuste et al. 2005). This
opens the possibility that which specific connections
are made may be a means of storing information
(Stepanyants et al. 2002). Selection of possible connections
from a large space of possibilities may thus be a means
of learning patterns (Marr 1969) and sequences (Fiete
et al. 2004). Speculatively, silent neurons may be neurons
that are currently not in use or rarely used, but awaiting
potential future use.

A better understanding of baseline activity patterns is
also a crucial component of our understanding of brain
energetics (Lennie 2003) and of the basis of collective
signals like the blood oxygenation level dependent
(BOLD) signal in functional MRI (Heeger et al. 2000).
Finally, if indeed most neurons are silent or mostly
silent, what are the implications for our understanding
of the anomalous activity patterns during epileptic
seizures? Does recruitment of silent neurons play as
much of a role in the pathology as hyper-excitability of
the firing neurons? Does the proportion of silent neurons
play a role in the predisposition of different brain
regions to epilepsy?

Towards a definitive answer

The existing experimental evidence indicates that the
true overall average level of action potential activity can
sometimes be far lower than estimates based on extra-
cellular measurements. This discrepancy could be ex-
plained if extracellular neuronal recording detects
mainly a small but active minority of the neurons pres-
ent. How can such a bias be safely avoided in the future?
A variety of techniques are becoming available.

Evoking activity in silent neurons

One way to eliminate the bias toward highly active cells
is to force neurons to fire. This has been done using
antidromic stimulation (Hahnloser et al. 2002; Swadlow
1998). This method allows extracellular recordings to be
established from neurons regardless of whether they are
active or not, as long as they are activated by an action
potential evoked in their axons.

Interestingly, the use of antidromic stimulation has
revealed populations of silent neurons (and therefore
highly sparse activity patterns) in motor and somato-
sensory areas. In a series of recordings from primary
motor neocortex of walking rabbits, Swadlow and
colleagues (Beloozerova et al. 2003) have observed
anatomically segregated populations of neurons in
which up to 66% of the cells were essentially silent at
rest (less than one spike per minute), and up to 75%



were silent during walking. Similar results have been
seen in the primary somatosensory neocortex of awake
rabbits (Swadlow and Hicks 1996). Highly sparse
activity patterns have also been found in nucleus HVC
(high vocal center) of singing zebra finches following
antidromic identification of neurons projecting to RA
(the robust nucleus of the arcopallium) (Hahnloser et al.
2002).

Sampling both silent and active neurons

A different sampling method that selects by a criterion
other than firing is patch-clamp recording. Instead,
patch recording selects for neurons that can seal to the
recording electrode (Brecht et al. 2003). This selection
criterion opens the possibility of recording from neurons
that fire no spikes before the establishment of the
recording (though, as noted above, the method may be
biased towards cells with big somas). Patch-clamp
recordings have shown that sensory input can evoke
very small numbers of spikes in the rat primary auditory
neocortex (DeWeese et al. 2003), and in the granule cells
of the cerebellum (Chadderton et al. 2004).

Recording from all neurons at once

A very direct approach would be simply to record
from many neurons in a region at once. If we can

record from almost all the neurons in a specific region,
then we can directly verify or disprove the existence of
a population of silent neurons. In order to know that
one is monitoring all the neurons in an area, one must
be able to visualize all neurons independent of their
activity. This can be done by imaging neurons labeled
with fluorescent dyes (Brecht et al. 2004), or by com-
bining dense electrode array recordings and fluores-
cence imaging (Segev et al. 2004; see also Fig. 1 for
more details). With activity-dependent indicators
such as calcium-sensitive dyes (Brecht et al. 2004),
both spontaneous and evoked neural activity may be
sampled across populations of neurons. Thus far, an
effective means of labeling neurons in vivo has been
bulk loading with the acetoxymethyl-(AM)-ester form
of synthetic indicators followed by two-photon fluo-
rescence scanning microscopy (Stosiek et al. 2003).
This method has been applied to monitor activity in
primary visual cortex (Ohki et al. 2005) and cerebellum
(Sullivan et al. 2005). In the case of primary visual
cortex, this method has shown that under a variety of
visual stimulus patterns, only 25–75% of rat and 63%
of cat dye-loaded neurons showed measurable calcium
signals (Ohki et al. 2005), indicating that this sensory
region’s neural activity may have an intermediate level
of sparseness. Expression of calcium-sensing proteins
based on green fluorescent protein (Wang et al. 2003)
may improve labeling and allow cell-type specificity
(Hasan et al. 2004).

A related approach is to combine electrode array
recordings with fluorescence imaging in order to match
the extracellularly recorded neurons with their physical
location. This could be done by ablating cells one by
one. For example, the activity of the whole population
could be recorded extracellularly, followed by the
targeted ablation of one fluorescent cell. A second phase
of recording from the whole population would then
be used to find which cell is absent. Repeating this
procedure many times would allow matching all the
recorded cells with their locations in space. Such a
method would also reveal the presence of silent neurons
that appose the array but do not produce spikes.

Another important issue that can be solved is whether
there are active cells in the multielectrode array catch-
ment area that are not recorded by the array due to
technical limitations. This can be addressed by com-
bining intracellular electrode recordings with array
recordings to verify that the cells that appear to be silent
are indeed not active.

Recording with complex stimuli in awake animals

As pointed out by Olshausen and Field (2005) with
respect to visual cortex, many studies use a combination
of reduced stimuli useful for characterizing simple
(usually linear) systems, along with a sequential rather
than continuous recording method, often in anesthetized
animals. Although these features of experimental design

Fig. 1 Combining electrophysiology and imaging may help solve
the dark matter problem. The multielectrode array used by Segev
et al. (2004) in conjunction with anatomical imaging to record from
80 to 100% of the ganglion cells in a patch of the retina. The
electrodes appear as a grid of black circles. Fluorescently labeled
ganglion cells and their optic nerve axons are shown in green.
Directly observing the neurons present in a patch of neural tissue
while recording activity may yield a more accurate picture of
population activity



have been chosen for good reasons, the net result may be
a biased sample of neuronal activity. We expect that
fluorescence imaging techniques and dense multi-
electrode arrays, used to record continuously from a
large fraction of specific neuronal populations in awake
animals, will ultimately answer the question of how
active the brain is. For the task of inferring neural
activity levels in the behaving animal, it will be of
obvious importance to use natural stimuli and complex
behavioral paradigms with awake animals rather than a
more reduced preparation.

Conclusions

Is the existing body of evidence sufficient to provide a
reasonable estimate of the fraction of silent cells?
Table 1 suggests that such proportions may vary
widely among different brain regions and preparations,
a notion which is consistent with hierarchical,
increasingly sparse neural coding schemes. Conserva-
tive estimates may, however, be possible by consider-
ing those parameters of the neuron–electrode interface
that affect the detection of unit signals: signal magni-
tudes very close to the neuron membrane, the signal
decay constant, and the signal-to-noise level above
which one can reliably identify neurons. Extracellular
signals around open-field neurons appear to drop
roughly exponentially with distance, a prediction (Rall
1962) that is supported by observations in different
systems (Gray et al. 1995; Segev et al. 2004). The
signal is characterized by V(r)=V0 e

�r/k, where V(r) is
the signal at distance r from the cell soma, V0 is
the signal very close to the soma, and k is the decay
constant. Interestingly, the decay constant was
measured to be 28.42 lm in the (three dimensional)
cortex (Gray et al. 1995) and 28 lm in the (nearly two-
dimensional) retina (Segev et al. 2004), so it appears
reasonably safe to assume that 28 lm is a representa-
tive value. Likewise, both theoretical calculations (Holt
and Koch 1999) and experimental measurements from
a number of different systems (e.g. Gray et al. 1995;
Henze et al. 2000; Segev et al. 2001, 2004) suggest that
V0 generally has a value larger than 1 mV. As a
conservative estimate we will use V0�0.5 mV. Finally,
a conventional conservative choice for a sufficient
signal level (3–4 times above the noise floor) appears
to be in the 50–60 lV range (Abeles 1991; Henze et al.
2000; Segev et al. 2004).

Combining these parameters together leads to the
following estimate for the ‘recordable radius’ around an
electrode: R=�k log(60 lV/500 lV)�59 lm. This
radius is in good agreement with the 50–140 lm range
suggested by Henze et al. using combined intracellular
and extracellular recordings in the rat hippocampus.
Using this radius, we can estimate the fraction of
recordable neurons by an extracellular electrode: F=Ne/
(4/3pR3D), where D is the neuron density of the specific

brain region under consideration, and Ne is the number
of observed neurons on the extracellular electrode.
Applying this formula to cat primary visual cortex,
where the neuron density is >60,000 cells/mm3, we
should expect to find consistently at least 50 neurons
in the recorded signal from a single microelectrode,
suggesting a silent fraction of at least 90%.

To summarize, the existence of large populations of
silent neurons has been suggested recently by experi-
mental evidence from diverse systems. Only some
regions and neuron types show this phenomenon: as
counterexamples, interneurons and cerebellar Purkinje
cells are active most or all of the time. Nonetheless, the
diversity of cases in which many neurons appear to be
silent includes major neuron types in the mammalian
neocortex and hippocampus, the cerebellum, and the
zebra finch song system. Silent neurons may be a
recurring principle of brain organization.

The likelihood that the brain contains a large
fraction of silent neurons suggests that information
processing may depend in part on which subset of
neurons is active. In this scenario many neurons are
silent most of the time, and a given stimulus triggers
spikes only in a highly selective, small subset of neu-
rons. While sparse activity patterns could in principle
be interpreted using vector-type population decoding
schemes (Georgopoulos et al. 1986; Pouget et al. 2003),
neural mechanisms that are tuned to synchrony (Abeles
1991), or to co-spiking timing patterns (Abeles and
Gerstein 1988; Rieke 1997) are likely to be more
powerful for reading sparse activity patterns, and
provide a substrate for binding different features of
a particular stimulus (Singer 1999). From existing
evidence, it seems likely that the coding strategy—and
level of sparseness—may vary among brain areas.
Thus, determining the level of silence in a given area
may provide hints to how information is coded in that
area. Although sparse neural representations pose a
special challenge to neurophysiologists, recent technical
advances may shed light on the question of how silent
the brain is, and thereby advance our understanding of
how nervous systems encode information.

Note added in proof: A recent study (Kerr et al. PNAS
2005;102(39):14063-8) reported extremely sparse spon-
taneous activity patterns in rat motor cortical neurons
using AM-ester bulk loading and electrical patch
recordings. Although nearly 90% of the imaged neurons
appear to be spontaneously active, over half of these
neurons averaged less than one action potential every 20
seconds, which was the overall average rate for the
population. It is highly likely that most of these neurons
will go unnoticed in typical electrophysiological
recording sessions.
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