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Emerging evidence indicates that information processing, as well as
learning and memory processes, in both the network and single-neuron
levels are highly dependent on the correlation structure of multiple
spike trains. Contemporary experimental as well as theoretical studies
that involve quasi-realistic neuronal stimulation thus require a method
for controlling spike train correlations. This letter introduces a general
new strategy for generating multiple spike trains with exactly controlled
mean firing rates and correlation structure (defined in terms of auto-
and cross-correlation functions). Our approach nonlinearly transforms
random gaussian-distributed processes with a predistorted correlation
structure into nonnegative rate processes, which are then used to gen-
erate doubly stochastic Poisson point processes with the required cor-
relation structure. We show how this approach can be used to generate
stationary or nonstationary spike trains from small or large groups of
neurons with diverse auto- and cross-correlation structures. We analyze
and derive analytical formulas for the high-order correlation structure of
generated spike trains and discuss the limitations of this approach.

1 Introduction

The principal representation of neural information is in sequences of action
potentials (APs). Within the mammalian central nervous system, each neu-
ron receives thousands of such input sequences (spike trains) from presy-
naptic cells. A neuron’s output is believed to be dependent on not only the
mean firing rate of presynaptic cells but also the degree of spatial and tempo-
ral correlation between spike trains from different presynaptic neurons (for
reviews, see, e.g., Abeles, 1991; Mel, 1994; Segev & London, 2000; Hausser &
Mel, 2003; London & Hausser, 2005). Furthermore, synaptic plasticity pro-
cesses are also known to be highly dependent on the correlation structure
between pre- and postsynaptic neurons, a process termed spike-timing-
dependent plasticity (STDP; Dayan & Abbott, 2001). The multicorrelation
structure of spike trains is also believed to be crucially important to the
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representation and processing of network information (Abeles, 1991), where
even weak pair-wise correlations can lead to highly organized network
states (Schneidman, Berry, Segev, & Bialek, 2006).

Methodological advances in recent years led to an experimental ability
to rapidly stimulate dendrites with a high temporal resolution and at
a resolution level approaching a single synapse (Matsuzaki et al., 2001;
Shoham, O’Connor, Sarkisov, & Wang, 2005; Araya, Eisenthal, & Yuste,
2006; Losonczy & Magee, 2006). Similar optical tools can also be used to
individually stimulate groups of presynaptic neurons (Boucsein, Nawrot,
Rotter, Aertsen, & Heck, 2005; Shoham, O’Connor et al., 2005; Farah,
Reutsky, & Shoham, 2007; Nikolenko, Poskanzer, & Yuste, 2007). These
tools enable the study of responses to controlled yet realistically complex
input patterns. Of particular interest among the large space of possible
stimulation pattern is the study of responses to varying degrees of correla-
tions between spike trains. This, however, requires a standard method for
generating spike trains with a specific degree of correlation between them
in order to conduct systematic studies.

The central measures of correlations among and between random
processes are the auto- and cross-correlation functions (estimated by the
auto- and cross-correlograms). Spike train correlation functions describe
not only the coincidence of spikes, but also probabilities for spikes to
appear at different relative delays, whether in two different sequences
(cross-correlation function) or in the same one (autocorrelation function).
Currently, there is no method that enables spike train generation with these
functions predefined. Recent work by Niebur (2007) proposes a partial
solution that allows the generation of spike trains with a specific degree of
coincident spikes (with predefined time domain binning) between different
sequences. Here we present a new approach to spike train generation
(stationary or nonstationary) in continuous time (no prebinning of the
time domain) with predefined auto- and cross-correlation functions. Our
approach is based on analytical solutions of the nonlinear distortion of
correlation structure in a linear-nonlinear-Poisson (LNP) generative model
with gaussian white noise inputs.

2 Method

2.1 Outline. We consider the problem of generating spike trains as dou-
bly stochastic Poisson point processes (Snyder & Miller, 1991; also known
as Cox processes: Cox, 1955; Cox & Lewis, 1966) with stochastic intensity
functions (instantaneous rates) having specific auto- and cross-correlation
functions. A Poisson process is called doubly stochastic if its rate profile is
itself a random process. Interestingly, point processes generated this way
preserve the full correlation structure of the corresponding stochastic inten-
sity processes (see Knox, 1970 and proof below). This important property
reduces the problem of generating correlated point processes to the problem
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Table 1: Algorithm Outline.

Goal: To generate N point processes with controlled mean rates E[λi (t)] and pairwise

auto- and cross-correlation functions Ri j (τ ) �= E[λi (t + τ )λ j (t)].

1. Calculate predistorted zero mean gaussian processes X= with correlation functions

ri j (τ ) �= E[xi (t + τ )xj (t)]:

a. Calculate the nonlinear transformation parameters and ri j (τ ):

Exponential Square Absolute Value

µi ln
(

E2[λi ]√
Rii (0)

)
4
√

3
2 E2[λi ] − Rii (0)

2 Equation A.8

σi

√
ln
(

Rii (0)
E2[λi ]

) √
E[λi ] −

√
3
2 E2[λi ] − Rii (0)

2

ri j (τ )
ln
(

Ri j (τ )
E[λi ]E[λ j ]

)
σi σ j

−µi µ j +
√

Ri j (τ )−E[λi ]E[λ j ]
2 +µ2

i µ2
j

σi σ j
Equation A.16

b. Generate N uncorrelated gaussian processes w(t).
c. Apply linear filter to uncorrelated gaussian processes.

H= = √ r= X= = H= W= .

2. Apply nonlinear transformation to X= to obtain the nonnegative processes λ(t) with
desired correlations structure:

Exponential Square Absolute Value
λi (t) exp(µi + σi xi (t)) (µi + σi xi (t))2 |µi + σi xi (t)|

3. Generate the point processes �N(t) from the stochastic intensity λ(t):
a. Generate exponentially distributed variables ζi ∼ exp(1).
b. Calculate times of the events tk of the target correlated point process from∫ tk

0 λ(t) dt =
k∑

i=1
ζi .

of generating correlated continuous stochastic nonnegative processes. We
next reduce the complexity of the problem by generating these nonnegative
processes through a nonlinear transformation applied to correlated gaus-
sian processes, an approach reviewed in Johnson (1994). This transforma-
tion affects not only the marginal distributions of the processes but also their
correlation functions, so we create correlated gaussian processes whose cor-
relation structure is appropriately predistorted to yield the desired final cor-
relations in the nonnegative processes. Table 1 and Figure 1 outline the full
algorithm.

2.2 Correlation Distortions. Our method is based on predistorting the
correlation structure of random gaussian processes in an exact way such
that a nonnegative transformation applied to them will yield the desired
auto- and cross-correlation functions (Johnson, 1994). We derive below the
distortions resulting from three basic nonnegative transformations: expo-
nential, square, and absolute value. We begin by restricting the discussion
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Figure 1: Algorithm outline. Simulation of two correlated point processes with
predefined auto- and cross-correlation functions (see Table 1). (1) Linearly fil-
tering white gaussian noise processes to obtain correlated gaussian processes
with predistorted correlations. (2) Nonlinearly transforming the gaussian pro-
cesses with predistorted correlations to obtain nonnegative processes with the
predefined correlation structure and mean values. (3) The nonnegative corre-
lated processes are used as rate processes of doubly stochastic Poisson point
processes. These point processes possess the correlation structure and mean
rates of the corresponding rate processes.

to correlation coefficients between draws of random variables Xi and �i .
In section 2.4, we expand this treatment to auto- and cross-correlation func-
tions between stochastic processes xi (t) and λi (t) by appropriately arranging
and filtering uncorrelated processes.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.08-08-847&iName=master.img-000.png&w=272&h=350
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2.2.1 Exponential Transformation. We transform the gaussian variable
Xi ∼ N(0, 1) using the following transformation:

�i = exp(µi + σi Xi ). (2.1)

The resulting variable �i has a log-normal distribution with expectation

E[�i ] = exp(µi ) · E[exp(σi Xi )] = exp(µi ) · exp
(

1
2

E[(σi Xi )2]
)

=

= exp
(

µi + σ 2
i

2

)
, (2.2)

where we have used Wick’s theorem (Simon, 1974) for mean zero, normal
random variables v ∼ N(0, σ 2

v ):

E[exp(v)] = exp
(

1
2

E[v2]
)

. (2.3)

Using the same theorem, we can also derive expressions for the dis-
torted correlations in terms of the predistorted gaussian random variable
correlations: E[Xi · Xj ] = ri j ,

Ri j = E[�i · � j ] = E[exp(µi ) exp(σi Xi ) · exp(µ j ) exp(σ j Xj )] =

= exp(µi + µ j ) · exp
(

1
2

E[(σi Xi + σ j Xj )2]
)

=

= E[�i ]E[� j ] · exp(σiσ j ri j ), (2.4)

and for the case i = j (rii = 1):

Rii
�= E

[
�2

i

] = E2[�i ] · exp
(
σ 2

i

)
. (2.5)

Equations 2.2 and 2.5 together allow us to evaluate the parameters µi and
σi :

σ 2
i = ln

(
Rii

E2[�i ]

)
µi = ln(E[�i ]) − σ 2

i

2
= ln

(
E2[�i ]√

Rii

)
. (2.6)

Finally, from equation 2.4, we derive the correlations predistortion as

ri j = 1
σiσ j

· ln
(

Ri j

E[�i ]E[� j ]

)
. (2.7)
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From equation 2.6, we easily obtain the following restriction on the range
of permissible values for Rii : Rii ≥ E2[�i ].

2.2.2 Square Transformation. We define the following transformation for
gaussian random variables Xi ∼ N(0, 1):

�i = (µi + σi Xi )2. (2.8)

The resulting random variable �i has an unnormalized non-central X2
1

distribution with expectation

E[�i ] = E
[
(σi Xi + µi )2] = E

[
σ 2

i X2
i + 2µiσi Xi + µ2

i

] = σ 2
i + µ2

i . (2.9)

This transformation distorts the correlation coefficients of the gaussian vari-
ables ri j

�= E[Xi · Xj ] into

Ri j = E[�i · � j ] = E[(σi Xi + µi )2 · (σ j Xj + µ j )2] =
= E

[(
σ 2

i X2
i + 2σi Xiµi + µ2

i

) · (σ 2
j X2

j + 2σ j Xjµ j + µ2
j

)] = (2.10)

= 2σ 2
i σ 2

j r2
i j + 4µiµ jσiσ j ri j + µ2

jσ
2
i + µ2

i σ
2
j + µ2

i µ
2
j + σ 2

i σ 2
j =

= 2σ 2
i σ 2

j r2
i j + 4µiµ jσiσ j ri j + E[�i ] · E[� j ],

where we have used Isserlis’s formula (1918) to calculate the fourth-order
moments of zero mean gaussian variables:

E[viv jvkvl ] = E[viv j ]E[vkvl ] + E[vivk]E[v jvl ] + E[vivl ]E[v jvk].

(2.11)

The quadratic equation, 2.10, has the following solutions for the predistor-
tion:

ri j =
−µiµ j +

√
1
2

(
Ri j − E[�i ]E[� j ] + 2µ2

i µ
2
j

)
σiσ j

(2.12)

rii = 1 ⇒ Rii = 3σ 4
i + 6σ 2

i µ2
i + µ4

i . (2.13)

Solving equation 2.13 together with 2.9 yields the transformation’s param-
eters,

σ 2
i = E[�i ] −

√
3
2

E2[�i ] − Rii

2
µ2

i =
√

3
2

E2[�i ] − Rii

2
, (2.14)

with the following bounds for the nonnegative process variance derived
from equation 2.14: E2[�i ] ≤ Rii ≤ 3E2[�i ].
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2.2.3 Absolute Value Transformation. We define the following transforma-
tion for the gaussian random variables Xi ∼ N(0, 1):

�i = |µi + σi Xi |. (2.15)

In the appendix, we derive a numerical solution for this transforma-
tion, which is inherently computationally more expensive compared to the
analytical solutions of the two other transformations above.

2.3 Doubly Stochastic Poisson Processes Possess the Same Correla-
tions as Their Stochastic Intensity Functions

Definitions: We represent each point process using a discrete-time count-
ing process N(t), which has unit increments every time there is an event and
remains constant until the next event occurs. Its respective increment pro-
cess �N(t) �= N(t + �t) − N(t) equals unity at all times t where an event
occurs, and zero otherwise. For regular point processes, the conditional
probability for an event obeys

P(�N(t) = 1 | λ(t)) = λ(t) · �t + O(�t) ——−→
�t→0

λ(t) · �t, (2.16)

where λ(t) is the stochastic intensity, or instantaneous firing rate of the
point process at time t. Nonstationary auto- and cross-correlation functions
between two stochastic intensity functions are defined as

Ri j (t, τ ) �= E(λi (t + τ ) · λ j (t)). (2.17)

Similarly, for point processes,

RPi j (t, τ ) �= E[�Ni (t + τ ) · �Nj (t)]
�t2 . (2.18)

Theorem 1. The instantaneous cross-correlation function RPi j (t, τ ) between two
doubly stochastic Poisson processes is equal to the cross-correlation function be-
tween their respective intensity functions Ri j (t, τ ). This property also holds for
the autocorrelation function of a single point process, except for τ = 0, where it
behaves as a delta function.

Proof. Applying the law of total expectation (the smoothing theorem), we
obtain

E[�Ni (t + τ ) · �Nj (t)] = E{E[�Ni (t + τ ) · �Nj (t) | λi (t + τ ), λ j (t)]}.
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Now, assuming small �t and using equation 2.16, we arrive at

E{E[�Ni (t + τ ) · �Nj (t) | λi (t + τ ), λ j (t)]} =
= E{P(�Ni (t + τ ) = 1,�Nj (t) = 1 | λi (t + τ ), λ j (t))} =
= E{λi (t + τ ) · �t · λ j (t) · �t} = Ri j (t, τ ) · �t2,

and then:

RPi j (t, τ ) �= E[�Ni (t + τ ) · �Nj (t)]
�t2 = Ri j (t, τ ) · �t2

�t2 = Ri j (t, τ ).

Similarly for an autocorrelation of a single point process, we get (τ �= 0):

RPii (t, τ ) �= E[�Ni (t + τ ) · �Ni (t)]
�t2 =

= E{E[�Ni (t + τ ) · �Ni (t) | λi (t + τ ), λi (t)]}
�t2 =

= E{P(�Ni (t + τ ) = 1,�Ni (t) = 1 | λi (t + τ ), λi (t))}
�t2 =

= E{λi (t + τ ) · �t · λi (t) · �t}
�t2 = Rii (t, τ ).

And in the case of τ = 0,

RPii (t, 0) = E
[
�N2

i (t)
]

�t2 = E
{

E
[
�N2

i (t) | λi (t)
]}

�t2 =

= E{P(�Ni (t) = 1 | λi (t))}
�t2 =

= E{λi (t) · �t}
�t2 = λi (t)

�t
=

�t→0
λi (t) · δ(τ ),

thereby completing the proof.

2.4 Generating the Correlated Processes. The results of the previ-
ous sections provide a general route for translating the predefined spike
train correlation structure into a multicorrelation structure defined between
gaussian random processes. To actually move from the individual pair-wise
correlations between random variables (see section 2.2) to temporally struc-
tured (with multiple delays) auto- and cross-correlation functions ri j (τ ), we
construct a matrix r= containing all the target pair-wise correlations in block
Toeplitz structure. To create the desired correlated gaussian processes, we
construct finite impulse response (FIR) filters and apply them to N white
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gaussian processes wi (t) of length L in the discrete time form. To apply
these filters in the stationary setting, we first build Toeplitz matrices Wi

where each of the N processes of length L is copied into 2K + 1 rows with
increasing delays (−K · �t ≤ τ ≤ K · �t). These matrices, when concate-
nated vertically, construct a matrix W= that contains all the processes with
all the required delayed replications:

W= =




W1

W2

...

WN







N blocks, where

Wi =




wi (�t) wi (2�t) wi (3�t) · · · · · ·
0 wi (�t) wi (2�t) wi (3�t) · · ·
...

. . .
. . .

. . .

0 · · · 0 wi (�t) · · ·





︸ ︷︷ ︸

L+2K

2K + 1. (2.19)

To obtain gaussian processes with the desired correlations ri j (τ ) =
E[xi (t + τ ) · xj (t)] requires the original white processes to be multiplied
by the correlation matrix square root (Johnson, 1994): X= = H= × W= , where
H= = √

r= and r= is a block matrix composed of Toeplitz matrices correspond-
ing to each of the auto- and cross-correlation functions:

r==




r11 r12 · · · r1N

r21 r22
...

...
. . .

...

rN1 · · · · · · rNN





︸ ︷︷ ︸

N blocks

N blocks, where

rij =




ri j (0) · · · ri j (K�t) 0 0
...

. . .
. . . 0

ri j (−K�t) ri j (0) ri j (K�t)

0
. . .

. . .
...

0 0 ri j (−K�t) · · · ri j (0)





︸ ︷︷ ︸

2K+1

2K + 1 (2.20)
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In practice, H= is highly redundant as a consequence of the replication
procedure applied in equations 2.19 and 2.20, and we select only N of
its rows (the central row in each block) to perform the filtering. In the
nonstationary case, the matrices Wi and rij do not have a Toeplitz structure,
and the matrix H= is not redundant in this case.

We note that in addition to this FIR-based approach, an alterative method
for constructing multivariate correlated gaussian processes using multivari-
ate autoregressive models is also possible here.

Once the correlated gaussian processes have been generated, they are
nonlinearly transformed into rate processes using one of the transforma-
tions discussed above. Generating the Poisson spike trains from these in-
homogeneous rate processes λ(t) proceeds using the standard procedure
described by Johnson (1996, eq. 7). In this procedure, a sequence of in-
dependent exponentially distributed random variables ζi ∼ exp(1) is gen-
erated, and then the event times tk are calculated by solving

∫ tk
0 λ(t) dt =∑k

i=1 ζi .

3 Results

Using our approach, it is possible to generate spike trains with different
correlation structures that are typical for real neural activity (see Figures 2C–
2F for examples). Cross-correlation function between two signals changes
while propagating through the steps of the algorithm and corresponds to
its theoretical values at every step (see Figures 2A–2C).

The generated point processes have intrinsically much more variability
than the underlying intensity processes. This can be seen reflected in the
intrinsic variance of the correlation function estimates (see Figures 2C–2F).

In principle, the approach developed in this letter is general enough to
also generate nonstationary point processes with a predefined correlation
structure. We tested the algorithm’s ability to generate spike trains with
time-varying rates and instantaneous, time-varying correlation structures.
Correlation structures in this general scenario are typically represented in
neuroscience research using the joint peristimulus time histogram (JPSTH).
Figure 3 presents a predefined and a data-estimated JPSTH for processes
whose mean has a gaussian temporal profile and displays a complex
biphasic time-varying interaction. As can be seen, the algorithm can jointly
capture the full temporal structure of both time-varying rates and the
interaction.

Next, we tested our algorithm’s ability to simulate spike trains resulting
from networks of pair-interacting neurons. Figure 4 shows typical activity
patterns in a network of 100 units simulated by controlling pair-wise cross-
correlation functions. Varying this correlation structure leads to a large
diversity of network activity patterns that can be simulated.
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Figure 2: Controlled cross-correlation structure between two stationary spike
trains. Each panel contains a comparison of an empirical cross-correlogram
(dotted line) and a desired cross-correlation function (solid line) value during
the steps of the algorithm (A–C) and in several examples (C–F). (A) Cross-
correlation function with predistorted values between two gaussian processes.
(B) After nonlinear transformation, we obtain rate processes with the desired
cross-correlation function. (C) Spike trains generated from correlated rate pro-
cesses possess the same cross-correlation function and simulate simple exci-
tatory relation between two cells. (D) Simulation of inhibitory connection be-
tween two cells. (E) STDP-type behavior of two spike trains (biphasic inhibition-
excitation relation). (F) Wide gaussian-shaped cross-correlation function.

4 High-Order Correlation Structure

Nonlinearly transforming gaussian processes, where the entire statistical
structure is determined by the first- and second-order moments, introduces
higher-order moments, which then carry over to the spike train statistics.
These moments depend exclusively on the nonlinear function applied. In
Figures 5A and 5B, we present the complexity distribution histogram and
quantile-quantile plots for the distribution of synchronous events in spike
trains with the same first- and second-order statistics generated by the
three different nonlinear transformations. The complexity distribution is a

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.08-08-847&iName=master.img-001.jpg&w=299&h=236


Controlling Spike Trains’ Correlations 1653

Figure 3: Controlled cross-correlation structure between two nonstationary
random spike trains. (A) Target time-varying mean rates and unnormalized
joint peristimulus time histogram (JPSTH) of two units with a nonstationary
correlation structure (transient version of the inhibitory-excitatory correlation
in Figure 2E). (B) Estimated empirical JPSTH and mean rates for the spike trains
generated by the algorithm.

Figure 4: Population behavior. Raster plots of different patterns of network
activity simulated for 100 units by controlling pair-wise cross-correlation func-
tions. All of the units possess mean firing rates of 10 Hz and 1 msec nar-
row auto- and cross-correlation functions (effectively delta functions): Rii (τ =
0) = 1100 Hz2; Ri j (τ = τpeak) = 1000 Hz2. (A) Uncorrelated network activity
(Ri j (τ ) = const). (B) Synchronous (τpeak = 0) cross-correlation between cells re-
sults in spontaneous synchronized bursting activity of the cells. (C) Gradually
changing the delay between the firing of different cells’ (0 < τpeak < 100 ms)
leads to a wave propagation effect. (D) Dividing the units into groups with dif-
ferent within-group (τpeak = 0) and between-group cross-correlation functions’
relative delays (�τpeak = 10 ms) results in synfire chain-like behavior.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.08-08-847&iName=master.img-002.jpg&w=302&h=138
http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.08-08-847&iName=master.img-003.jpg&w=298&h=140
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Figure 5: High-order correlation structure of generated spike trains. (A) Com-
plexity distribution histograms for the three nonlinear transformations (ξ -
number of simultaneous spikes). N = 100 spike trains with 50 Hz mean
firing rate and delta auto- and cross-correlations were simulated (1 ms
time bins, Rii (τ = 0) = 3875 Hz2; Ri j (τ = 0) = 3750 Hz2). (B) Quantile-quantile
plots for the complexity distributions in A. The exponential transformation
is compared to the two other methods, revealing large differences in the
tails of the distributions. (C) Unnormalized third-order correlation functions
R3

�N(τ2, τ3) �= E[�N1(t)�N2(t − τ2)�N3(t − τ3)] for three stationary spike trains
generated using the exponential nonlinear transformation (mean firing rate
20 Hz, exponentially shaped pair-wise cross-correlation functions, delays:
τ2peak = −10 ms, τ3peak = 10 ms, (τ3 − τ2)peak = 0). (D) Analytical third-order
rate correlation structure for the simulation parameters (from equation 4.3).

useful way of characterizing the zero-lag high-order correlation structure
that is defined in Grün, Abeles, and Diesmann (2008) as the probability
p (ξ ) to observe a particular number of synchronous spikes ξ (complexity).
These results support the notion that the three nonlinear transformations
lead to a different higher-order correlation structure. While the mean level
of coincidences is the same (here E(ξ ) = 5), the complexity distribution
resulting from the exponential nonlinear transformation has significantly
wider tails (corresponding to a higher proportion of highly synchronous
events). The square and absolute value transformations appear to lead to a
fairly similar high-order correlation structure.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.08-08-847&iName=master.img-004.jpg&w=298&h=229
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To gain a better understanding of the high-order statistics of processes
generated using this type of method, we have derived analytical formu-
las for the exponential transformation �i = exp (µi + σi Xi ). The n-order
correlation of transformed correlated normally distributed variablesXi ∼
N (0, 1) ; E

[
Xi Xj

] = ri j has the following form:

Rn
�

�= E

[
n∏

i=1

exp (µi + σi Xi )

]
=

= exp

(
n∑

i=1

µi

)
· E

[
exp

(
n∑

i=1

σi Xi

)]
=

= exp

(
n∑

i=1

µi

)
· exp


1

2
E


( n∑

i=1

σi Xi

)2



 , (4.1)

where the second step follows from Wick’s theorem. Expanding and then
collecting terms,

Rn
� = exp

(
n∑

i=1

µi

)
· exp


1

2


 n∑

i=1

σ 2
i +

n∑
i, j=1
i �= j

σiσ j ri j




 =

=
n∏

i=1

E [�i ] · exp


 n∑

i, j=1
i< j

σiσ j ri j


 (4.2)

which can be further simplified using equation 2.4:

Rn
� =

n∏
i=1

E [�i ] ·
n∏

i, j=1
i< j

Ri j

E[�i ]E[� j ]
=

∏n
i, j=1
i< j

Ri j∏n
i=1 (E [�i ])

n−2 (4.3)

The theorem in section 2.3 can be easily generalized for higher-order
correlations; hence, equation 4.3 can be applied also for calculating a high-
order correlation structure between spike trains Rn

�N (see Figures 5C–5D).

5 Discussion

The generation of continuous gaussian processes with a predefined correla-
tion structure is a classical problem with well-known solutions and numer-
ous applications in all fields of signal and image processing. However, while
the empirical correlation structure of neural spike trains has been measured
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many thousands of times using well-known analysis tools introduced in the
1960s (Perkel, Gerstein, & Moore, 1967a, 1967b; Gerstein & Perkel, 1969), the
development of a complementary simulation tool was left largely ignored
for four decades and has only recently begun to attract attention. The
recent interest in controlled-correlation spike trains is mostly motivated by
the emergence of experimental techniques for rapid patterned stimulation
of neurons with high temporal and spatial resolution (Shoham, O’Connor
et al., 2005; Gasparini & Magee, 2006; Losonczy & Magee, 2006; Nikolenko,
et al., 2007), as well as the recent suggestion in neural coding studies that
second-order statistics dominate the observed neuroretinal spiking pattern
and can be used to explain essentially the full structure (Schneidman et al.,
2006; Shlens et al., 2006). In addition, these developments could potentially
find applications in econometric time series, earthquake data, network
traffic, reliability research, optical communication, and heartbeat variability.

To generate the stochastic intensity functions, we have provided solu-
tions using three of the most fundamental nonlinear transformations to
nonnegative variables: exponentiation, absolute value, and squaring. Dou-
bly stochastic Poisson processes with rate functions that are nonlinearly
transformed gaussian processes (the so called linear-nonlinear-Poisson, or
LNP model) have previously been studied in various contexts. For example,
square-transformed processes were studied extensively in the framework
of low-light optical communication where the gaussian process represents
a quantum probability density (Snyder & Miller, 1991), while exponentially
transformed rates have recently been studied in the context of neural encod-
ing models (Paninski, Shoham, Fellows, Hatsopoulos, & Donoghue, 2004;
Shoham, Paninski et al., 2005; Pillow et al., 2008). The different nonlinearities
lead to solutions with different characteristics and complexity, which may
be preferable in different applications. The exponential and square transfor-
mations have an analytical solution for the correlation predistortion, while
for the absolute value transformation, the problem of computing the correla-
tion predistortion can be solved only numerically. The three transformations
lead to spike trains with different permissible levels of dynamic variation,
as measured, for example, by the processes’ coefficient of variation,

CV(λ) �= std(λ)
E(λ)

,

or equivalently,

CV2(λ) = Var(λ)
E2(λ)

= Rλλ(τ = 0)
E2(λ)

− 1.

The exponential transformation is the most flexible, allowing essen-
tially every possible CV; the squaring transformation is more restricted
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Figure 6: Effect of the nonlinear transformations on the resulting probability
density functions. The four plots show the resulting marginal distributions Pλ(λ)
for mean firing rates of 10 Hz and four different levels of variation: (A) CV2 =
0.015. (B) CV2 = 0.3. (C) CV2 = 2. (D) CV2 = 4. Note that as the CV increases,
the mode of Pλ(λ) decreases and the tails become stronger.

(0 ≤ CV2 ≤ 2); and the absolute value transformation is the most limited
(0 ≤ CV2 ≤ π

2 − 1). Figure 6 presents the probability density functions of
the rate processes for different CV values. Note how the higher CV values
are obtained through nonlinear stretching of the distributions’ tails. For
the rectifying transformation, the formulas are derived similarly to the
absolute value transformation case by using equations A.4, A.5, and A.15
instead of A.6, A.7, and A.16, respectively.

It is interesting to compare our approach with other methods devel-
oped recently for controlling the correlation structure of spike trains.
The method by Niebur (2007) probabilistically distributes spikes from a
“mother” spike train (Kuhn, Aertsen, & Rotter, 2003) to tune synchrony
in stationary homogeneous Poisson processes. For addressing the more
general problem of temporal correlation functions among different spike
trains, Brette (2009, method II) extended this approach by adding a
controlled temporal jitter to the spike timing. However, this general
strategy was solved only for stationary cases, introduces only positive

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.08-08-847&iName=master.img-005.png&w=301&h=230
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correlations, and generally leads to strong coupling between the auto-
and cross-correlation structure (Tetzlaff et al., 2008). It is also not well
connected to central concepts in the theory of random point processes, such
as stochastic intensity, and could potentially introduce spurious high-order
interdependencies.

In contrast, our strategy was based on using correlated gaussian pro-
cesses as an underlying structure for generating the spike trains. This gen-
eral concept was also developed independently in two very recent stud-
ies (Brette, 2009; Macke, Berens, Ecker, Tolias, & Bethge, 2009), in both
cases using a threshold nonlinearity. The study by Brette (2009, method
I) generates rate processes by applying a rectifying nonlinearity to gaus-
sian processes with a specific exponential autocorrelation function. The
rectifying nonlinearity is conceptually close to the absolute-value transfor-
mation studied here, and formulas for the correlation distortion it creates
can be derived using the procedures we introduce in the appendix (see
also above). However, as noted by Brette (2009), it has the undesirable
property that when the correlations are strong, the rates are zero most of
the time, and it is therefore of limited use for simulating realistic spike
trains. In addition, Brette limits his discussion to the case of low corre-
lations, without the concept of correlation distortion, which is central to
the generality of our approach. In an alternative “dichotomized gaussian”
approach introduced by Macke et al. (2009), gaussian processes are thresh-
olded to directly generate the binary spike trains in the time domain, with-
out going through the intermediate step of a rate process (see also Bethge
& Berens, 2008, and Johnson, 1994, section IIID, for related analysis). Be-
cause the second step is deterministic, the structure is single stochastic,
in contrast to the doubly stochastic Poisson structure explored here. The
dichotomized gaussian approach requires numerical solutions of nonlin-
ear equations and was found to lead to spike trains with nearly maximal
entropy.

Our methods can generate a flexible and very broad range of auto-
and cross-correlation structures. For example, the method allows the
generation of processes with the same autocorrelation and very differ-
ent cross-correlation structures (see Figure 2), and either one can prac-
tically be very different from an exponential function (in contrast to
Brette, 2009). The method is practically limited to correlation structures
that lead to positive-definite matrices r= (see equation 2.20). More gen-
erally, the method is limited to correlation structures that are realiz-
able by pure rate covariation, without any precise spike coordination.
(Staude, Rotter, & Grün, 2008). The analysis by Staude et al. demon-
strated that rate-covariation models have peak cross-correlation between
spike trains that are weaker than the respective peak autocorrelations (the
smaller of the two). Moreover, when two processes have slow dynamics
(broad autocorrelations), they have a limited ability to sustain a narrow
cross-correlation.
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Appendix: Correlation Distortion for an Absolute
Value Transformation

We consider the transformation �i = |µi + σi Xi |, where Xi ∼ N(0, 1) with
ri j

�= E[Xi · Xj ] and rii = 1 that results in folded normal distribution of �i .
The solution is divided into two steps. First, we derive a solution for µi and
σi as a function of a desired Rii = E[�2

i ] and E[�i ] and then proceed to de-
rive ri j as a function of the calculated µi , σi and the desired Ri j . Expressions
for the first and second moments of truncated gaussian random variables
(both univariate and bivariate) were derived earlier in Rosenbaum (1961).
To derive moments for the absolute value transformation, we treat it as
a superposition of two (univariate) or four (bivariate) rectified gaussian
random variables.

A.1 Step 1. For a standard normal random variable Z ∼ N(0, 1), we
define: w(h) = ∫∞

h fZ(α)dα—the relative weight of a truncated gaussian
random variable Z̃:

f Z̃(z̃; h) =




1

w(h) · √
2π

exp
(

− z̃2

2

)
z̃ ≥ h

0 z̃ < h
. (A.1)

Note that w(h) = 1
2 (1 − erf( h√

2
)), where erf is the error function.

The univariate Z̃ has the following first and second moments (Rosen-
baum, 1961):

E[Z̃; h] = m1(h) = 1

w(h) · √
2π

· exp
(

−1
2

h2
)

(A.2)

E[Z̃2; h] = m2(h) = 1 + h

w(h) · √
2π

· exp
(

−1
2

h2
)

. (A.3)

After translation and scaling Z̃i = σi Z̃ + µi and substituting h = −µi
σi

,
these moments become

E[Z̃] = E[σi Z̃ + µi ] = σi E
[

Z̃;−µi

σi

]
+ µi = σi m1

(
−µi

σi

)
+ µi

(A.4)

R̃ii = E
[
Z̃2

i

] = E
[(

σi Z̃ + µi
)2
]

= σ 2
i E

[
Z̃2;−µi

σi

]

+ 2σiµi E
[

Z̃;−µi

σi

]
+ µ2

i =

= m2

(
−µi

σi

)
σ 2

i + 2m1

(
−µi

σi

)
σiµi + µ2

i . (A.5)
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These expressions can now be used to derive the moments of �i (which
can be seen as a sum of two truncated, scaled, and shifted gaussian random
variables):

E [�i ] = E [|σi Xi + µi |] =
[

m1

(
−µi

σi

)
· σi + µi

]
· w

(
−µi

σi

)
+

+
[

m1

(
µi

σi

)
· σi − µi

]
· w

(
µi

σi

)
. (A.6)

Rii = E
[
�2

i

] = E
[|σi Xi + µi |2

] =

=
[

m2

(
−µi

σi

)
σ 2

i + 2m1

(
−µi

σi

)
σiµi + µi

]
· w

(
−µi

σi

)
+

+
[

m2

(
µi

σi

)
σ 2

i − 2m1

(
µi

σi

)
σiµi − µi

]
· w

(
µi

σi

)
= σ 2

i + µ2
i .

(A.7)

Several algebraic steps were omitted in the last expression.
Bounds on Rii can be derived from the above expressions: E2[�i ] ≤

Rii ≤ π
2 E2[�i ].

In addition, note that E[�i ]
σi

and Rii

σ 2
i

are functions of a single variable h =µi
σi

.
As a consequence, Rii

E2[�i ]
= Rii /σ

2
i

E2[�i ]/σ 2
i

= f (h) is also a function of a single vari-
able h that can be found numerically. After h is found, the transformation
parameters can be calculated by deriving from equation A.7:

σ 2
i = Rii

h2 + 1
µ2

i = Rii − σ 2
i . (A.8)

A.2 Step 2. For a bivariate random variable Z ∼ N([ 0
0 ], [ 1

ρ

ρ

1 ]), we define
w(h, k, ρ) = ∫∞

h

∫∞
k fZ(α)dα—the relative weight of a truncated bivariate

gaussian random variableZ̃:

f Z̃(z̃; h) =




1

w (h, k, ρ) · 2π
√

1 − ρ2
exp

(
−1

2
· z̃T

[
1 ρ

ρ 1

]−1

z̃

)
z̃1 ≥ h, z̃2 ≥ k.

0 otherwise

(A.9)

Expressions for the moments of this distribution were derived by Rosen-
baum (1961):

E
[
Z̃1; h, k, ρ

] = m10 (h, k, ρ) =

= 1
w (h, k, ρ)

·




1
2π

exp
(

−1
2

h2
)

·
∫ ∞

k−ρh√
1−ρ2

exp
(

−1
2
α2
)

dα+

+ ρ

2π
exp

(
−1

2
k2
)

·
∫ ∞

h−ρk√
1−ρ2

exp
(

−1
2
α2
)

dα



(A.10)
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E
[
Z̃2; h, k, ρ

] = m01 (h, k, ρ) = m10 (k, h, ρ) =

= 1
w (h, k, ρ)

·




ρ

2π
exp

(
−1

2
h2
)

·
∫ ∞

k−ρh√
1−ρ2

exp
(

−1
2
α2
)

dα+

+ 1
2π

exp
(

−1
2

k2
)

·
∫ ∞

h−ρk√
1−ρ2

exp
(

−1
2
α2
)

dα



(A.11)

E
[
Z̃1 Z̃2; h, k, ρ

] = m11 (h, k, ρ) = ρ +

+ ρh
2π · w (h, k, ρ)

exp
(

−1
2

h2
)

·
∫ ∞

k−ρh√
1−ρ2

exp
(

−1
2
α2
)

dα +

+ ρk
2π · w (h, k, ρ)

exp
(

−1
2

k2
)

·
∫ ∞

h−ρk√
1−ρ2

exp
(

−1
2
α2
)

dα +

+
√

1 − ρ2

2π · w (h, k, ρ)
· exp

(
−h2 − 2ρhk + k2

2 (1 − ρ2)

)
. (A.12)

Now, in a similar way as for the univariate variables, these expressions
after scaling and translating Z̃i = σi Z̃1 + µi ; Z̃j = σ j Z̃2 + µ j (where Z̃1 and
Z̃2 are truncated at h = −µi

σi
and k = −µ j

σ j
, respectively) are:

E[Z̃i ; ri j ] = E
[
σi Z̃1 + µi ;−µi

σi
,−µ j

σ j
, ri j

]
=

= σi m10

(
−µi

σi
,−µ j

σ j
, ri j

)
+ µi (A.13)

E
[
Z̃j ; ri j

]= E
[
σ j Z̃2 + µ j ;−µi

σi
,−µ j

σ j
, ri j

]
=

= σ j m01

(
−µi

σi
,−µ j

σ j
, ri j

)
+ µ j (A.14)

R̃i j = E
[
Z̃i Z̃j ; ri j

] =

E
[(

σi Z̃1 + µi
) · (σ j Z̃2 + µ j

) ;−µi

σi
,−µ j

σ j
, ri j

]
=

= m11

(
−µi

σi
,−µ j

σ j
, ri j

)
σiσ j + m10

(
−µi

σi
,−µ j

σ j
, ri j

)
σiµ j +

+ m01

(
−µi

σi
,−µ j

σ j
, ri j

)
σ jµi + µiµ j . (A.15)
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And after a superposition of four such solutions, we get the following
expressions for the absolute value transformation:

Ri j = E[�i� j ] = E
[|σi Xi + µi | |σ j Xj + µ j |

] =

=


m11

(−µi

σi
,−µ j

σ j
, ri j

) · σiσ j + m10
(−µi

σi
,−µ j

σ j
, ri j

)
σiµ j+

+ m01

(
−µi

σi
,−µ j

σ j
, ri j

)
σ jµi + µiµ j




·w
(

−µi

σi
,−µ j

σ j
, ri j

)
+

+




m11
(µi

σi
,
µ j

σ j
, ri j

) · σiσ j − m10

(
µi

σi
,
µ j

σ j
, ri j

)
σiµ j−

−m01

(
µi

σi
,
µ j

σ j
, ri j

)
σ jµi + µiµ j




·w
(

µi

σi
,
µ j

σ j
, ri j

)
+

+




m11
(µi

σi
,−µ j

σ j
,−ri j

) · σiσ j + m10

(
µi

σi
,−µ j

σ j
,−ri j

)
σiµ j−

−m01

(
µi

σi
,−µ j

σ j
,−ri j

)
σ jµi − µiµ j




·w
(

µi

σi
,−µ j

σ j
,−ri j

)
+

+




m11

(
−µi

σi
,
µ j

σ j
,−ri j

)
· σiσ j − m10

(
−µi

σi
,
µ j

σ j
,−ri j

)
σiµ j+

+m01

(
−µi

σi
,
µ j

σ j
,−ri j

)
σ jµi − µiµ j




·w
(

−µi

σi
,
µ j

σ j
,−ri j

)
. (A.16)

Here Ri j is a function of a single variable ri j (µi, j and σi, j were calculated
previously). Predistorted value ri j can be calculated by numerically solving
this equation.

In summary, we calculate the transformation parameters (µ and σ ) from
the desired mean rate and the autocorrelation function at τ = 0 of the rate
process, and then proceed to calculate the predistorted correlations ri j for
the gaussian processes from the desired correlations Ri j of the nonnegative
processes.
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