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K. Shane Guillory a,*, Shy Shoham b, Richard A. Normann a

a Center for Neural Interfaces, Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
b Department of Biomedical Engineering, the Technion-Israel Institute of Technology, Haifa, Israel 32000

Received 21 December 2002; received in revised form 14 March 2005

Communicated by Robert Barlow
Abstract

In this paper, we investigate the decoding of flashed, full-field visual stimuli while recording from a population of retinal ganglion
cells. We present a direct statistical method for determining the likelihood that a response was evoked by a particular stimulus, and
use this method to estimate stimuli based on microelectrode array recordings in the turtle retina. This method uses the well-known
time-varying Poisson model of neural firing, along with extensions to accommodate neural refractory periods. Unlike other approaches
commonly used for Poisson processes, the specific formulation presented here is bin free and requires few user-specified parameters. Sta-
tistical dependency issues and the effects of stationarity on the estimation method are also discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The entire visual experience of vertebrates is conveyed in
the spatiotemporal patterns of action potentials that are
output from their retinal ganglion cells. Early research into
retinal encoding determined that ganglion cells can be
placed into broad response classes (Granda & Fulbrook,
1989; Hartline, 1938) and that they had relatively localized,
structured receptive fields (Kuffler, 1953). However, the
responses of individual ganglion cells can exhibit significant
variability to identical sets of visual stimuli and similar
responses for very different stimuli (Reich, Victor, Knight,
Ozaki, & Kaplan, 1997). These responses can also include
stochastic variations due to the inherent noise in photo-
transduction and neural transmission processes, especially
at near threshold levels. Because of these variabilities and
ambiguities, it is generally recognized that populations of
ganglion cells are required to reliably encode the visual
scene. Nevertheless, the specifics of how these cells work
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together and how their firing patterns can best be interpret-
ed are still the subject of much investigation. The explora-
tion of methods for estimating stimuli based on the neural
response is one approach to understanding these processes.

Neural responses to discrete stimuli are commonly ana-
lyzed with Peri-Stimulus Time Histograms (PSTHs). These
plots average out the per-trial variability and provide the
prototypical responses for a particular stimulus. Based on
observed differences in the responses, one can create a vari-
ety of bin counting and vector representations that allow
the stimuli to be determined from the neural response
(Awiszus, 1997; Becker & Kruger, 1996; Gawne & Rich-
mond, 1993; Geisler & Albrecht, 1997; Oram, Foldiak, Per-
rett, & Sengpiel, 1998; Salinas & Abbott, 1994). Ideally,
however, a method is desired for directly evaluating the
likelihood that the spikes from a single trial came from a
certain prototypical response without ad hoc vector repre-
sentations (Sanger, 2002).

Statistical methods for point processes can provide
insight and a mathematical framework for studying this
class of problems (Brown, Barbieri, Eden, & Frank, 2003;
Johnson, 1996; Kass & Ventura, 2001; Perkel, Gerstein,
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& Moore, 1967). They provide a language for describing
both the distribution of possible responses to stimuli and
the likelihoods of different stimuli given an observed neural
firing pattern. In this paper, we present a method for esti-
mating the most likely stimuli among discrete sets on the
basis of the neural response, and we apply this method to
the responses of turtle retina ganglion cells. For the for-
ward encoding model of the time-varying spike response,
this method uses the well-known inhomogeneous Poisson
process combined with a refractory renewal period follow-
ing each spike. This combined model has also been called
the Inhomogeneous Markov Interval or IMI process by
Kass and Ventura (2001). Unlike most Poisson estimation
methods used for neural signal decoding (Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997), the presented
method is essentially bin-free and can include neural refrac-
tory periods in the estimation. Using this approach, we
show that a discrete set of eight color stimuli can be decod-
ed with an accuracy of 78% with recordings from a popu-
lation of 18 cells. Performances from simulated cell
populations constructed from the data are also presented.

When stochastic estimation methods are applied to a
neural system, the statistical dependencies between cells
and the stationarity of the responses over time must be
determined (Johnson, 1996). Several researchers have pro-
posed the existence of higher-order or synchrony codes that
could be used among groups of cells in a variety of cortical
and sensory neural systems (Abeles, 1991; Softky, 1995),
including the retina (Meister, Lagnado, & Baylor, 1995).
In this study, we used the normalized Joint PSTH (Aertsen,
Gerstein, Habib, & Palm, 1989) to examine the correlation
structure of the responses. This analysis found no signifi-
cant correlations, and the cells were therefore treated as
statistically independent coders of information for the esti-
mation analysis. However, generalizations of the estima-
tion method for correlated spike trains are discussed. In
this study, we also examine the impact of the stationarity
of the recorded responses on the model building and esti-
mation performance.

2. Methods

2.1. Preparation

Recordings were made from ganglion cells in isolated turtle (pseudemys

scripta elegans) retinas with isolation performed as described by Perlman,
Normann, Chandler, and Lipetz (1990). In these experiments, a 100-elec-
trode extracellular array with 1.5 mm electrodes in a 10 · 10 grid with
400 lm inter-electrode spacing was used. The retina was placed on a glass
slide (photoreceptor side down), held in place by a millipore filter border,
and superfused with an oxygenated (95% O2, 5% CO2) buffer solution
(110 mM NaCl, 2.6 mM KCl, 2.0 mM CaCl2, 2.0 mM MgCl2, 22 mM
NaHCO3, and 10 mM D-glucose) delivered at 0.5 ml/min. Light stimuli
were provided by a Hitachi Superscan Pro 620 monitor with a vertical
refresh rate of 100 Hz and stimulus updates were performed between
refreshes. The monitor image was focused by a 55 mm camera lens
(f2.8) and prism system to produce a 6 · 6 mm image on the photoreceptor
layer of the retina. Once the retina was in place, the electrode array was
lowered into the ganglion cell layer of the retina until single unit activity
became apparent. The data acquisition system allowed simultaneous
online extraction of the spike timing and waveforms from all 100 elec-
trodes in the array (Guillory & Normann, 1999). Multi-unit recordings
were obtained and the single unit waveforms were classified offline using
MATLAB implementations of the clustering algorithm described by Sho-
ham, Fellows, and Normann (2003).

While unit activity was recorded, full-field light stimuli were presented
in trials consisting of a 200 ms ON period followed by a 300 ms OFF peri-
od before the next trial. The light stimuli were randomly selected from an
equally probable discrete set of eight stimuli composed of 100:1 contrast,
ON–OFF binary combinations of the red, green, and blue channels of the
monitor (ON intensities of 1.4, 2.0, and 1.5 mW/m2, respectively). These
intensities and color variations were selected as a simple stimulus set that
could be differentiated by the pentachromatic visual system of the turtle.
These color combinations appear to the humans as black (no stimulus),
red, green, blue, cyan, magenta, yellow, and white. Data were collected
from three retinas with a total of 16,000 stimulus presentation trials per
retina. For the cells recorded and analyzed in this study, PSTHs were con-
structed for each stimulus color in the data set. Raster plots of the spikes
across all trials and separate PSTH plots for the first and second halves of
the data sets were generated and visually compared to provide an empir-
ical index of response stationarity (Awiszus, 1997).

2.2. Estimation method

To perform statistical estimation, a forward model for neural encoding
must be selected, and the model employed here begins with the non-ho-
mogenous Poisson process. This is the simplest model with the fewest
assumptions for capturing a time-varying likelihood of event generation,
and it uses a stochastic rate function k (t) as its only parameter. In this
method, the rate function for each cell and stimulus was estimated by
applying a unit-area Gaussian smoothing kernel (Szucs, 1998) to the
PSTHs generated from training data sets. The width (r) of this Gaussian
filter and the number of training trials represent the only two free param-
eters for the presented method.

For a non-homogeneous Poisson process, the likelihood that a given
set of observed events came from specific time-varying rate function can
be directly calculated by (Snyder & Miller, 1991)

PðX j kðtÞ; t0; t1Þ ¼ exp �
Z t1

t0

kðtÞdt
� �� � Yn

i¼1

kðxiÞ
 !

; ð1Þ

where P (X|k (t), t0, t1) is the probability that the set of n events (X)
over the time period t0 to t1 was generated by the rate function k (t),
and k (xi) is the value of the rate function at the times of the occurrence
(xi) of the n events. For time periods where no events occurred, the �
term is omitted.

For neural spike events within a trial, the stochastic rate k (t) over the
trial is a function of the stimulus, and under the Poisson model, Eq. (1) for
a single cell becomes:

PðXcjsÞ ¼ P ðXc j kcðs; tÞÞ ¼ exp �
Z T

0

kcðs; tÞdt
� �� � Yn

i¼1

kcðs; xc;iÞ
 !

; ð2Þ

where P (Xc|s) of observing the set of spikes Xc from cell c for stimulus s,
P (Xc|kc (s,t)) is the probability that the observed set of spikes (Xc) from cell
c over the period of the trial [0,T] was generated by the time-varying re-
sponse function kc (s,t) of cell c for stimulus s, and kc (s,xc,i) is the value
of the rate function at the times of the n spikes in the trial (xc,i) for cell
c. The intuitive interpretation of Eq. (2) is that the first term represents
the penalty for not getting spikes when they are expected and the second
term represents the reward for detecting spikes when likely. Although vari-
ations of the Poisson model have been widely used for modeling and esti-
mating spike timing (see Rieke et al., 1997, for a summary), most of these
focus on the likelihoods of observing specific spike counts in different bins
within a trial. The continuous likelihood function shown in (2) does not
require bins to be defined by the user, it only requires a description of
the rate function (k (t)) within the trial. This continuous form is recently
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becoming more widely used for neural signal estimation (Brown, Barbieri,
Ventura, Kass, & Frank, 2002; Kass & Ventura, 2001; Normann, Warren,
Ammermuller, Fernandez, & Guillory, 2001).

The likelihood Equation (2) is optimal when neurons behave as pure
Poisson processes. Real neurons, however, deviate from Poisson behavior
at small time scales due to their refractory periods and these statistical
deviations have been well studied (Berry & Meister, 1998; Brown et al.,
2002; Johnson, 1996; Reich, Victor, & Knight, 1998). The simplest method
for modeling refractory effects for a neuron is to represent its rate function
k (t) as the product of a stimulus-driven free-firing rate q (t) and a recovery
function w (t) which drops to 0 after a spike and returns from 0 to 1 over
time. When the neural firing is controlled by the refractory periods, the
PSTH deviates from the free-firing rate due to the refractory effects. Once
an estimate for w (t) is determined for a cell, the free firing rate function
q (t) can be estimated from the average PSTH rate r (t) computed from
M trials (Miller, 1985) by:

qðtÞ ¼ rðtÞ
1
M

PM
j¼1

W jðtÞ
; ð3Þ

whereWj (t) is the product of the recovery functions for all spikes over trial
j. This method is also discussed in Berry and Meister (1998), along with a
recovery function for the salamander retina composed of an absolute
refractory period (w (t) = 0), followed by an exponential recovery to unity.
To include the effects of the refractory period in Eq. (2), the Poisson rate
function k (t) is defined as the estimated free firing rate q (t) for the unit,
multiplied by the recovery functions w (t) inserted following each spike.
This process is illustrated in Fig. 1A, and it effectively prevents the likeli-
hood from being penalized for times when spikes are expected but not
present due to the refractory period of the cell.

When calculating the likelihood of a pattern of spikes from a popula-
tion of cells, possible dependencies or relationships in spike generation
between cells must be considered. When the spikes in each cell are gener-
ated independently of the spikes of other cells, combining estimation like-
lihoods from the group is a simple matter of multiplication to compute the
joint probability of the observed pattern for the population:

P ðX jsÞ ¼
YC
c¼1

P ðXcjsÞ; ð4Þ

where P (X|s) is the probability of observing the population spike pattern
X across C cells for stimulus s. Once a likelihood of observing a set of
spikes given a specific stimulus s is available (P (X|s)), it can be used with
Bayes’ Rule to calculate the likelihood of a stimulus having been presented
given an observed set of spikes (P (s|X)):
observed
spikes

free firing
rate q(t)

combined
poisson
rate λ (t)

A

Fig. 1. (A) Computation of the combined Poisson rate function from the free
recovery function at each spike occurrence. (B) Determination of the recover
channel. This function is composed of an absolute refractory period, followed b
ISI values.
PðsjX Þ ¼ PðX jsÞP ðsÞ
P ðX Þ ; ð5Þ

where P (s) is the prior probability of stimulus s being presented, and P (X)
is the independent probability of the spike pattern being observed. In
decoding applications in which the relative likelihoods of different stimuli
are being compared for stimulus estimation, the P (X) term can be consid-
ered a common normalization coefficient and ignored.

If the cells do not spike independently, it quickly becomes computa-
tionally challenging to generically model and utilize this information for
estimation (Sanger, 2002). In addition, the encoding analysis and model
can easily require impractical amounts of training data if too many general
model terms are added to capture these dependencies and their relation-
ships to the stimuli. However, when a clear underlying dependency model
can be postulated, the dependencies can be easier to include in the analysis,
especially if the underlying processes are independent. One such dependen-
cy code for the retina has been proposed by Brivanlou, Warland, and Mei-
ster (1998) in which tightly synchronized spikes between groups of closely
spaced ganglion cells are driven by common amacrine cells. In this model,
the amacrine cells independently code for features that are different than
the features coded by the individual ganglion cells. For stimulus likelihood
estimation, the amacrine and ganglion responses can be separated by
removing tightly correlated (amacrine) spikes from the ganglion cell
responses, and generating separate firing rate and renewal estimates for
the amacrine cells. Eqs. (2)–(5) can then be applied to the ganglion and
amacrine cell responses, except that the ganglion renewal functions must
be applied to the ganglion rate functions for both ganglion and ama-
crine-induced spikes, and both the ganglion spike and amacrine spike
renewal functions must be applied to the estimated amacrine rate
functions.

2.3. Implementation and analysis

In this study, dependencies among pairs of recorded cells were
explored using the normalized Joint PSTH (Aertsen et al., 1989; Palm,
Aertsen, & Gerstein, 1988). Because of the sparse nature of the recordings,
only positive correlations were investigated for significance. Based on this
analysis, the cells in this study were treated as independent for stimulus
estimation.

For the encoding analysis, the stochastic rate functions for each cell
and stimulus were estimated by applying a unit-area Gaussian smoothing
kernel to the PSTH plots. The width of the smoothing filter was optimized
for stimulus estimation performance, and final analyses were performed
with r = 10 ms. For each data set that underwent decoding analysis, the
stimulus estimation for each trial was performed with firing and refractory
time
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models built exclusively from all other trials in the set. For decoding anal-
ysis with models that included refractory periods, a recovery function was
estimated for each cell, and the free firing rate was estimated from the
PSTH according to (3). The recovery functions were difficult to estimate
due to the sparse nature of the recordings and the best empirical fit for
the data was provided by an absolute refractory period followed by a lin-
ear recovery to unity. The end of the absolute period was determined by
the offset of the first non-zero value in the inter-spike interval (ISI) histo-
gram, and the end of the linear recovery period was determined by the off-
set of the first peak in the ISI histogram. This process is illustrated in
Fig. 1B. For cells that did not have strong peaks in the local ISI histogram,
absolute refractory periods were used without the linear recovery phase.

For the decoding analysis, time was discretized into steps (Dt) of 1 ms
for the rate functions and the likelihoods were represented by logarithms
for efficient multiplication. In this implementation, Eqs. (2) and (4)
become:

LcðXcjsÞ ¼ ln½P ðXcjsÞ� ¼ �
XT=Dt
t¼0

kcðs; t � DtÞðDtÞ
 !

þ
Xn
i¼1

ln½kcðs; xc;iÞ�; ð6Þ

LðX jsÞ ¼ ln½pðX jsÞ� ¼
XC
c¼1

LcðXcjsÞ; ð7Þ

where Lc (Xc|s) is the log-likelihood for observing the set of spikes Xc from
cell c given stimulus s, and L (X|s) is the log-likelihood for the entire pop-
ulation. The first term of (6) serves as a first order numerical integration of
the rate function, and the second term of (6) is omitted when no spikes are
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Fig. 2. Peri-Stimulus Time Histogram (PSTH) examples of general responses fr
was from 200 to 500 ms. The PSTH for each color is plotted in its stimulus co
activation. (B) Slow ON response and slow, weak off response. (C) Slow O
response with strong red and green activation. (E) Slow ON response. (F) Fa
detected over a trial period. For each trial evaluated, stimulus likelihoods
were calculated according to Bayes’ Rule (5), and the stimulus with the
maximum likelihood was selected as the estimate. Because only the likeli-
hoods of stimuli relative to each other were considered, the P (X) term of
(5) was omitted, and the P (s) term was also not included since each stim-
ulus was equally probable within the set.

Performance for this stimulus estimation method was evaluated both
with and without refractory renewal models included. The number of trials
included in the analysis was optimized for stimulus estimation perfor-
mance, and sets of 4000 trials were used for the final analysis. Simulated
data sets were also generated for comparison to the actual retinal data.
In these simulated sets, smoothed PSTH curves (Gaussian, r = 10 ms)
from actual retinal cells were used as rate functions for both Poisson gen-
eration of spikes and estimation of the spike data. These simulated spike
trains were guaranteed to be stationary and free of any correlations
between cells.

3. Results

Results are presented from three retinas with spikes
from 18, 15, and 11 cells, respectively. Only spike record-
ings with signal-to-noise ratios greater than three and clear
unit separation were used. In general, the ganglion cell
responses were quite sparse for this preparation and mode
of stimulation. For example, the most active cell had a typ-
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ical response rate of 2.3 spikes/trial, and the average for all
cells was only 0.7 spikes/trial.

The responses of the cells were consistent with the clas-
sification schemes of previous research (Armington,
Adolph, & Wu, 1991; Granda & Fulbrook, 1989). Repre-
sentative samples of the PSTHs are shown in Fig. 2.
Responses were considered fast if they contained peaks
within 50–125 ms for a light change (Fig. 2F) and slow if
they contained peaks with latencies greater than 125 ms
(Figs. 2A, B, and E). Of the cells recorded, 66% (29/44)
contained ON responses with 25% (7/29) of these showing
a slow ON response. The cells with slow ON responses
tended to have a more sustained response, especially to
stimuli that included red. Eighty-seven percentage (39/44)
of the recorded cells contained OFF responses with 56%
(22/39) of these showing a slow OFF response. Thirty-six
percentage (16/44) of the recorded cells showed both ON
and OFF responses. The fast ON and OFF responses were
typically very repeatable and often exhibited latencies that
were a function of the color and intensity of the stimulus
(e.g., Fig. 2F). The slower ON and OFF responses (e.g.,
Figs. 2A and E) had peaks that tended to overlay each
other in time.

The stability of the responses over time was assessed by
raster plots of the trials over the course of the experiment
and Peri-Stimulus Time Histogram (PSTH) plots con-
structed from different periods. In the first retina, 11 of
the 18 cells showed good stability, and this retina was used
in the subsequent correlation and estimation analysis. The
second and third retinas showed a gradual deterioration of
all of the recorded cells over the course of the experiment.
Figs. 3 and 4 show raster plots over the duration of the
experiment for a cell with relatively good stability (3),
and a cell with poor stability (4). Plots of the PSTHs over
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significant changes in the OFF response component throughout the experimen
trials 4000–8000, and 10,000–14,000 from these cells are
shown in Figs. 3B and C, and 4B and C. The PSTHs of
the cell in Fig. 4 showed a drift from slow ON and OFF
responses to a faster OFF response, and similar changes
were seen in many of the nonstationary recorded cells. It
was unclear whether this was a natural change of some cells
in the retina due to the stimulation or changes induced by
the invasive nature of this preparation and extracellular
recording technique. The effects of these drifts on the per-
formance of the estimation as more trials are used for the
model building are discussed below.

The statistical dependencies between the cells were
assessed with Joint peristimulus time histogram (JPSTH)
analysis. Fig. 5 shows the JPSTH plots of the cell pair with
the highest correlations found. Fig. 5A shows a 2D histo-
gram of the coincident firing activity (cross-product of
the spike trains of a trial for two units) across all stimulus
trials. This plot represents the observed coincident firing
rates P(a*b) in the data. Fig. 5B represents the predicted
coincident firing rate P(a)*P(b) given an assumption of
independence and Fig. 5C represents the difference between
Figs. 5A and B. Fig. 5D shows the 1 ms bins in Fig. 5C that
are above a 97.5% likelihood of being due to chance. In this
plot, significant correlations show up as dense areas, and
collapsing the plot along the diagonal produces a simple
cross-correlogram with the stimulus-related correlation
removed. For all cell pairs, including the pair shown in
Fig. 5D, the bins were sparse, unstructured, and not indic-
ative of correlations between the cells.

The stimulus estimation presented here has two free
variables: the number of trials included in the model build-
ing and analysis set, and the width of the Gaussian smooth-
ing filters used to build the response probabilities from the
PSTH data. Estimation performance for all 18 cells in the
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Fig. 5. Joint Peri-Stimulus Time Histograms (JPSTH) analysis of neighboring cells with the strongest correlations in the data set. (A) 2D histogram of
actual coincident firing probabilities. (B) Plot of predicted coincident firing rates from the individual PSTH responses. (C) Differences between the
recorded and predicted coincident responses. (D) Plot of bins with coincident firing that have a probability above chance of >0.975.
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first retina is plotted as a function of these two variables in
Fig. 6. Smoothing the PSTH generalizes the response mod-
el obtained from the available data, but too much can over-
ly blur the distinctions between the responses. Likewise,
more trials are better for model building until the non-
stationary drift in the response characteristics begins to
limit the accuracy and performance of the models. The
peak performances were in the range of 7–12 ms for the fil-
ter widths (r) and approximately 3000–4500 trials (a time
window of 25–38 min). Especially poor performance result-
ed from using less than 1000 trials and smoothing filters
narrower than 3 ms.

Final stimulus decoding estimations were generated for
the 18 cells using 4000 trials and PSTH smoothing filters
with r = 10 ms. The performances as a function of the
number of cells are shown in Fig. 7A. This plot shows
the accuracy for the correct stimulus being estimated by
the maximum likelihood as well as the performance for
the correct stimulus being in the top two and top three like-
liest values. The cells were ordered to provide the quickest
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Fig. 7. (A) Estimation performance as a function of the number of cells used.
are shown for the correct value being the most likely according to the estimation
correct estimation for real cells and simulated cells.
convergence to the maximum value. Table 1 shows the esti-
mation performance for all 18 cells broken down by indi-
vidual color. The highest average performance for this
estimation task was 78% as compared with 12.5% for
chance. Estimation for the models that included individual
cell refractory periods performed nearly identically (within
1% at each cell count) to the models and estimation func-
tions without cell refractory periods.

Fig. 7B shows the performance for the 18 recorded cells
versus simulated spike trains generated from the smoothed
PSTHs of these cells according to an ideal Poisson model.
The performance curves for the actual and simulated cells
were nearly identical for up to 11 cells, and the simulated
cells performed incrementally better with 12–18 cells. This
similarity in performance suggests that, given the encoding
model, the estimation performance was maximized for the
available set of population recordings. This difference at
the end of the curve is likely due to the perfect stationarity
of the simulated cells compared to the actual cells. Combi-
nations of multiple, independent simulated responses from
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Table 1
Estimation performance for different stimulus colors

Blk Red Grn Yel Blu Cyn Mag Whi Total

Total presented 491 468 509 541 494 494 512 491 4000
Total guessed 489 449 582 546 473 484 488 489 4000
Estimated correctly (%) 95 87 74 69 89 77 64 70 78
Within top two (%) 97 95 94 95 95 89 93 97 94
Within top three (%) 97 97 98 98 96 98 97 99 98

The total number of trials presented for each color is shown in the top of the table along with the number of times the color was estimated as the most
likely stimulus presented. Individual stimulus performances are also shown for the correct color being within the top two and top three most likely
stimulus.
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the best cells in the set (such as the cell in Fig. 2F) per-
formed better with up to 90% correct classification for 10
cells.

4. Discussion

Once a stochastic model for neural encoding has been
proposed, an optimal decoding method can almost always
be directly derived. The method presented here for estimat-
ing flashed visual stimuli based on the neural response
starts with one of the simplest encoding models, a non-ho-
mogeneous Poisson rate code that varies as a function of
stimulus. This model captures the intuition associated with
the PSTH—that there is an average response rate that var-
ies in time for each stimulus. The primary advantages of
this method over many other trial-based decoding tech-
niques are the lack of subjective parameters such as bin siz-
es and locations and the ability to incorporate refractory
behavior. The two free variables for the method, the width
of the model smoothing filter and the number of trials used
to build the response models, can be easily investigated to
find their optimum values based on the application or data.
This allows the Poisson model with refractory period to be
used as a standard or starting point for evaluating other
neural coding models and decoding methods for trial-based
experiments.

All of the recorded cells showed some nonstationary
response changes over the course of the experiment. For
stochastic estimation, these changes limit the range of time
that can be used for model building and this experiment
reached a maximum performance using approximately
4000 trials or 30 min of data. Alternatively, one can use
models that vary in time or adaptively evolve based on
recent responses (Brown, Nguyen, Frank, Wilson, & Solo,
2001; Johnson, 1996). For estimation studies, these changes
also highlight the importance of using randomly shuffled
stimulus sets rather than each individual stimulus in series.

The responses for each trial typically consisted of only a
few spikes across all electrodes, and the firing did not
appear to be limited by refractory periods. This sparseness
and the high percentage of cells with OFF responses was
typical of the recordings from this preparation and record-
ing array. It was therefore not surprising to find an only
marginal (typically less than 1%) improvement in perfor-
mance, when the refractory recovery functions were includ-
ed in the model building and stimulus estimation.
Experiments with higher firing rates are likely to be
required for the refractory inclusion to have a significant
contribution.

The presence of correlations and possible synchrony
codes in the salamander retina has been reported for elec-
trodes closer than 400 lm (Brivanlou et al., 1998; Meister
et al., 1995). The prevalence and significance of such syn-
chrony codes in vertebrates is still a subject of research
and there is some evidence that ganglion cells act as rela-
tively independent information encoders in some species
(Chichilnisky & Baylor, 1999; Nirenberg, Carcieri, Jacobs,
& Latham, 2001; Latham & Nirenberg, 2005). The elec-
trode spacing in the array used in this study was 400 lm
and no such correlations were found.

Over the last couple of decades there has been a constant
dialog over the relative importance of precise spike timing
codes versus rate codes in the nervous system (Softky,
1995). However, both of these models can be captured by
a stochastic process with a rate function that varies in time
(Berry & Meister, 1998). Precise timing codes are reflected
by sharp peaks in the rate function, whereas rate codes are
characterized by smoother, constant rate values. Most of
the cells analyzed in these experiments exhibited both rate
and precise timing characteristics in response to the flashed
stimulus. For example, the cell in Fig. 2F shows different
latencies for the first and second spikes in the response
for each stimulus. This cell also shows differences in the
areas under the response curves (or average rates) for each
stimulus. This combination of specific spike timing and
local spike rate differences for each stimulus can also be
seen in the cells in Figs. 2A, D, and E. The stochastic esti-
mation method presented here provides a convenient way
to capture both of these aspects without having to set up
special bin structures and other metrics such as the
response latencies of the first and second spikes.

When stimulus sets are arbitrarily chosen, the estimation
performance from a decoding algorithm becomes some-
what meaningless since any type of easy or difficult set
can be used. The eight stimuli used in this study formed
a very simple closed set that was not intended to exhaus-
tively explore the space of visual stimuli. Instead, this set
was chosen to provide an illustrative example of how the
proposed estimation method can be used for trial-based
estimation tasks. In general, neural decoding research
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should always focus on model-based approaches that
include the definition of the encoding model and the deri-
vation of the optimal inverse estimation method for the
model. An understanding of the forward and inverse mod-
els for any neural system allows the fundamental limits for
coding and decoding performance to be determined, and it
allows the neural system under study to be placed in the
context of larger neural systems.

When more information is known about the coding
structure of a neural system, more sophisticated decoding
models can be constructed to utilize this knowledge. Recent
likelihood decoding methods have been created for hippo-
campal place cells (Brown et al., 2001) and motor cortex
(Barbieri et al., 2004; Brockwell, Rojas, & Kass, 2004;
Kemere, Shenoy, & Meng, 2004; Shoham, 2001; Shoham
et al., 2005; Wu et al., 2004). In addition, improved meth-
ods have recently been published for estimation of neural
firing rates from the PSTH based on likelihood (Kass, Ven-
tura, & Cai, 2003), and for evaluating the fit of a stochastic
forward model to the spike data (Brown et al., 2002).
Future decoding studies for the visual system should con-
sider these recent works, as well as focus on ways to use
these techniques for estimation of continuous stimuli and
natural visual scenes.
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